A380808
Expansion of e.g.f. (1/x) * Series_Reversion( x * exp(-2*x) / (1 + x*exp(-x)) ).
Original entry on oeis.org
1, 3, 24, 335, 6812, 183397, 6168406, 249350285, 11785793352, 638146503593, 38960123581154, 2648475653518081, 198429466488527164, 16246940820392924189, 1443430758561178861758, 138305198841617791230533, 14217431594874334746229520, 1560842183273111251153540945
Offset: 0
A380080
Expansion of e.g.f. (1/x) * Series_Reversion( x / sqrt(1 + 2*x*exp(x)) ).
Original entry on oeis.org
1, 1, 3, 15, 109, 1045, 12501, 179599, 3015657, 57988809, 1257058585, 30337358491, 806837271021, 23448335293981, 739379851041573, 25143044445680295, 917252832237053521, 35735484803144976145, 1480838869407287923569, 65038486139094829172275, 3017945328547452509505045
Offset: 0
A380081
Expansion of e.g.f. (1/x) * Series_Reversion( x / (1 + 3*x*exp(x))^(1/3) ).
Original entry on oeis.org
1, 1, 2, 7, 36, 245, 2086, 21357, 255704, 3507625, 54258570, 934600601, 17743468612, 368146983789, 8288468950958, 201258635444245, 5243025162331056, 145871455305823697, 4316920830720239122, 135408946029576741297, 4487574630295937337500, 156686063319198543135061
Offset: 0
A366230
Expansion of e.g.f. A(x,y) satisfying A(x,y) = 1 + x*A(x,y) * exp(x*y * A(x,y)), as a triangle read by rows.
Original entry on oeis.org
1, 1, 0, 2, 2, 0, 6, 18, 3, 0, 24, 144, 96, 4, 0, 120, 1200, 1800, 400, 5, 0, 720, 10800, 28800, 16200, 1440, 6, 0, 5040, 105840, 441000, 470400, 119070, 4704, 7, 0, 40320, 1128960, 6773760, 11760000, 6021120, 762048, 14336, 8, 0, 362880, 13063680, 106686720, 274337280, 238140000, 65028096, 4408992, 41472, 9, 0
Offset: 0
E.g.f. A(x,y) = 1 + x + (2*y + 2)*x^2/2! + (3*y^2 + 18*y + 6)*x^3/3! + (4*y^3 + 96*y^2 + 144*y + 24)*x^4/4! + (5*y^4 + 400*y^3 + 1800*y^2 + 1200*y + 120)*x^5/5! + (6*y^5 + 1440*y^4 + 16200*y^3 + 28800*y^2 + 10800*y + 720)*x^6/6! + (7*y^6 + 4704*y^5 + 119070*y^4 + 470400*y^3 + 441000*y^2 + 105840*y + 5040)*x^7/7! + (8*y^7 + 14336*y^6 + 762048*y^5 + 6021120*y^4 + 11760000*y^3 + 6773760*y^2 + 1128960*y + 40320)*x^8/8! + ...
This triangle of coefficients T(n,k) of x^n*y^k/n! in A(x,y) begins
1;
1, 0;
2, 2, 0;
6, 18, 3, 0;
24, 144, 96, 4, 0;
120, 1200, 1800, 400, 5, 0;
720, 10800, 28800, 16200, 1440, 6, 0;
5040, 105840, 441000, 470400, 119070, 4704, 7, 0;
40320, 1128960, 6773760, 11760000, 6021120, 762048, 14336, 8, 0;
362880, 13063680, 106686720, 274337280, 238140000, 65028096, 4408992, 41472, 9, 0;
...
-
{T(n,k) = n! * binomial(n+1, n-k)/(n+1) * (n-k)^k/k!}
for(n=0,10, for(k=0,n, print1(T(n,k),", "));print(""))
Comments