cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A377845 Numbers that have more than one odd exponent larger than 1 in their prime factorization.

Original entry on oeis.org

216, 864, 1000, 1080, 1512, 1944, 2376, 2744, 2808, 3000, 3375, 3456, 3672, 4000, 4104, 4320, 4968, 5400, 6048, 6264, 6696, 6750, 7000, 7560, 7776, 7992, 8232, 8856, 9000, 9261, 9288, 9504, 9720, 10152, 10584, 10648, 10976, 11000, 11232, 11448, 11880, 12000, 12744, 13000
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

The asymptotic density of this sequence is 1 - Product_{p prime} (1 - 1/(p^2*(p+1))) * (1 + Sum_{p prime} (1/(p^3+p^2-1))) = 0.0035024748296318122535... .

Crossrefs

Complement of the union of A335275 and A377844.
Subsequence of A295661.
Subsequences: A162142, A179671, A190011.
Cf. A065465.

Programs

  • Mathematica
    q[n_] := Count[FactorInteger[n][[;; , 2]], _?(# > 1 && OddQ[#] &)] > 1; Select[Range[13000], q]
  • PARI
    is(k) = #select(x -> x>1 && x%2, factor(k)[, 2]) > 1;

A177493 Products of cubes of 2 or more distinct primes.

Original entry on oeis.org

216, 1000, 2744, 3375, 9261, 10648, 17576, 27000, 35937, 39304, 42875, 54872, 59319, 74088, 97336, 132651, 166375, 185193, 195112, 238328, 274625, 287496, 328509, 343000, 405224, 456533, 474552, 551368, 614125, 636056, 658503, 753571, 804357, 830584, 857375
Offset: 1

Views

Author

Keywords

Examples

			216 = 2^3 * 3^3.
9261 = 3^3 * 7^3.
27000 = 2^3 * 3^3 * 5^3.
		

Crossrefs

Programs

  • Maple
    q:= n-> not isprime(n) and numtheory[issqrfree](n):
    map(x-> x^3, select(q, [$4..120]))[];  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={3},AppendTo[lst,n]],{n,0,9!}];lst
    Reap[Do[{p, e}=Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={3}, Sow[n]], {n, 343000}]][[2, 1]]
  • PARI
    [k^3 | k<-[1..100], k>1 && !isprime(k) && issquarefree(k)] \\ Andrew Howroyd, Jan 14 2020
    
  • Python
    from math import isqrt
    from sympy import primepi, mobius
    def A177493(n):
        def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n+1, f(n+1)
        while m != k:
            m, k = k, f(k)
        return m**3 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A120944(n)^3. - R. J. Mathar, Dec 06 2010

Extensions

Definition corrected by R. J. Mathar, Dec 06 2010
Terms a(25) and beyond from Andrew Howroyd, Jan 14 2020

A355462 Powerful numbers divisible by exactly 2 distinct primes.

Original entry on oeis.org

36, 72, 100, 108, 144, 196, 200, 216, 225, 288, 324, 392, 400, 432, 441, 484, 500, 576, 648, 675, 676, 784, 800, 864, 968, 972, 1000, 1089, 1125, 1152, 1156, 1225, 1296, 1323, 1352, 1372, 1444, 1521, 1568, 1600, 1728, 1936, 1944, 2000, 2025, 2116, 2304, 2312, 2500
Offset: 1

Views

Author

Amiram Eldar, Jul 03 2022

Keywords

Comments

First differs from A286708 at n = 25.
Number of the form p^i * q^j, where p != q are primes and i,j > 1.
Numbers k such that A001221(k) = 2 and A051904(k) >= 2.
The possible values of the number of the divisors (A000005) of terms in this sequence is any composite number that is not 8 or twice a prime (A264828 \ {1, 8}).
675 = 3^3*5^2 and 676 = 2^2*13^2 are 2 consecutive integers in this sequence. There are no other such pairs below 10^22 (the lesser members of such pairs are terms of A060355).

Examples

			36 is a term since 36 = 2^2 * 3^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2500], Length[(e = FactorInteger[#][[;; , 2]])] == 2 && Min[e] > 1 &]
  • PARI
    is(n) = {my(f=factor(n)); #f~ == 2 && vecmin(f[,2]) > 1};

Formula

Sum_{n>=1} 1/a(n) = ((Sum_{p prime} (1/(p*(p-1))))^2 - Sum_{p prime} (1/(p^2*(p-1)^2)))/2 = 0.1583860791... .
Previous Showing 11-13 of 13 results.