cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 77 results. Next

A246063 First occurrence of n in sequence A112329.

Original entry on oeis.org

2, 1, 3, 9, 15, 64, 45, 256, 96, 144, 192, 4096, 240, 16384, 768, 576, 480, 262144, 720, 1048576, 960, 2304, 12288, 16777216, 1440, 5184, 49152, 3600, 3840, 1073741824, 2880, 4294967296, 3360, 36864, 786432, 20736, 5040, 274877906944, 3145728, 147456, 6720
Offset: 0

Views

Author

Ray Chandler, Aug 24 2014

Keywords

Comments

Inspired by a comment from Robert G. Wilson v in sequence A112329.

Crossrefs

Programs

  • Mathematica
    g[lst_,p_]:=Module[{t,i,j},Union[Flatten[Table[t=lst[[i]];t[[j]]=p*t[[j]];Sort[t],{i,Length[lst]},{j,Length[lst[[i]]]}],1],Table[Sort[Append[lst[[i]],p]],{i,Length[lst]}]]];f[n_]:=Module[{i,j,p,e,lst={{}}},{p,e}=Transpose[FactorInteger[n]];Do[lst=g[lst,p[[i]]],{i,Length[p]},{j,e[[i]]}];lst];
    (* above factor functions from T. D. Noe in A162247 *)
    nmax=100;
    a1={2,1,3};
    Do[
    least=Infinity;
    fn=f[n];
    Do[
    exps=Reverse[fnitem]-1;
    odd=even=1;
    cnt=0;
    Do[
    cnt++;
    odd*=(Prime[cnt+1]^exp);
    even*=(Prime[cnt]^exp);
    ,{exp,exps}];
    least=Min[least,odd,4even];
    ,{fnitem,fn}];
    AppendTo[a1,least];
    ,{n,3,nmax}];
    a1
  • PARI
    d(n) = if (denominator(n)==1, numdiv(n), 0);
    f(n) = numdiv(n) - 2*d(n/2) + 2*d(n/4);
    a(n) = {my(k = 1); while (f(k) != n, k++); k;} \\ Michel Marcus, Jul 30 2017

Formula

a(p) = 2^(p+1) for prime p >= 5.

A304649 Number of divisors d|n such that neither d nor n/d is a perfect power greater than 1.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 0, 1, 4, 2, 4, 2, 4, 4, 0, 2, 4, 2, 4, 4, 4, 2, 4, 1, 4, 0, 4, 2, 8, 2, 0, 4, 4, 4, 5, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 10, 2, 4, 4, 0, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 4, 0, 4, 2, 10, 4, 4, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Examples

			The a(36) = 5 ways to write 36 as a product of two numbers that are not perfect powers greater than 1 are 2*18, 3*12, 6*6, 12*3, 18*2.
		

Crossrefs

Programs

  • Mathematica
    nn=1000;
    sradQ[n_]:=GCD@@FactorInteger[n][[All,2]]===1;
    Table[Length@Select[Divisors[n],sradQ[n/#]&&sradQ[#]&],{n,nn}]
  • PARI
    a(n) = sumdiv(n, d, !ispower(d) && !ispower(n/d)); \\ Michel Marcus, May 17 2018

A318954 Minimum shifted Heinz number of a strict factorization of n into factors > 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 6, 13, 10, 19, 14, 29, 15, 37, 26, 21, 34, 53, 33, 61, 35, 39, 58, 79, 30, 89, 74, 57, 65, 107, 42, 113, 85, 87, 106, 91, 66, 151, 122, 111, 70, 173, 78, 181, 145, 129, 158, 199, 102, 223, 161, 159, 185, 239, 114, 203, 130, 183, 214, 271, 105
Offset: 1

Views

Author

Gus Wiseman, Sep 05 2018

Keywords

Comments

The shifted Heinz number of a factorization (y_1, ..., y_k) is prime(y_1 - 1) * ... * prime(y_k - 1).

Examples

			The strict factorizations of 60 are (2*3*10), (2*5*6), (2*30), (3*4*5), (3*20), (4*15), (5*12), (6*10), (60), with shifted Heinz numbers 138, 154, 218, 105, 201, 215, 217, 253, 277 respectively, so a(60) = 105.
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@Select[facs[n/d],Min@@#1>=d&],{d,Rest[Divisors[n]]}]];
    Table[Min[Times@@Prime/@(#-1)&/@Select[facs[n],UnsameQ@@#&]],{n,100}]

A344084 Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Examples

			The sets are the columns below:
  1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
      2   3 3 2   4 4 4 2 3 3 2   5 5 5 5 2 3 4 3 4 4 2
              3         4 4 4 3           5 5 5 5 5 5 3
                              4                       5
As a tetrangle, the first four triangles are:
  {1}
  {2},{1,2}
  {3},{1,3},{2,3},{1,2,3}
  {4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
		

Crossrefs

Triangle lengths are A000079.
Triangle sums are A001793.
Positions of first appearances are A005183.
Set maxima are A070939.
Set lengths are A124736.

Programs

  • Mathematica
    SortBy[Rest[Subsets[Range[5]]],Last]

A355032 a(n) is the maximum number of prime signatures of numbers with n divisors that have the same number of prime divisors (counted with multiplicity).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2022

Keywords

Examples

			a(2) = 1 since the numbers with 2 divisors are all primes and thus have only 1 prime signature.
a(36) = 2 since numbers with 36 divisors have 2 prime signatures, p1^5 * p2^5 and p1 * p2 * p3^8, that correspond to numbers with 10 prime divisors (counted with multiplicity).
a(72) = 3 since numbers with 72 divisors have 3 prime signatures, p1 * p2^5 * p3^5, p1^2 * p2^2 * p3^7 and p1 * p2 * p3 * p4^8, that correspond to numbers with 11 prime divisors (counted with multiplicity).
		

Crossrefs

Programs

  • Mathematica
    Table[Max[Tally[Total[#-1]& /@ f[n]][[;;,2]]], {n, 1, 100}] (* using the function f by T. D. Noe at A162247 *)

Formula

a(A355033(n)) = n.

A355033 a(n) is the least number k such that A355032(k) = n, or -1 if no such k exists.

Original entry on oeis.org

1, 36, 72, 288, 960, 720, 1440, 3456, 2880, 6912, 5760, 10080, 11520, 8640, 24192, 21600, 47520, 17280, 28800, 20160, 62208, 46080, 82944, 34560, 50400, 40320, 57600, 51840, 110880, 126720, 141120, 69120, 60480, 248832, 86400, 80640, 233280, 237600, 103680, 100800
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    m[n_] := Max[Tally[Total[# - 1] & /@ f[n]][[;; , 2]]]; seq[len_, max_] := Module[{s = Table[0, {len}], c = 0, n = 1, k}, While[c < len && n < max, k = m[n]; If[k <= len && s[[k]] == 0, c++; s[[k]] = n]; n++]; s]; seq[30, 10^6] (* using the function f by T. D. Noe at A162247 *)

A380760 Integers k with at least one proper factorization for which the sum of the same fixed integer power >= 2 of the factors equals k.

Original entry on oeis.org

16, 27, 48, 54, 256, 270, 528, 1134, 1755, 2916, 3125, 7216, 7830, 11520, 11934, 15360, 19683, 22464, 30000, 31752, 40095, 40960, 46656, 65536, 69168, 81702, 86436, 93555, 100368, 146880, 200000, 212400, 264654, 273600, 291060, 303030, 317520, 340470, 362880
Offset: 1

Views

Author

Charles L. Hohn, Feb 02 2025

Keywords

Comments

Superset of A381538 for values >= 16, and it is conjectured that the terms that match multiple nonequivalent factorizations here, such as a(5) = 256 (see Example), are exactly the terms of A381538 that can be produced as m^(m^e) by multiple m.

Examples

			a(1) = 16: 2 * 2 * 2 * 2 = 2^2 + 2^2 + 2^2 + 2^2 = 16.
a(5) = 256: 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 + 2^5 = 256, and also 4 * 4 * 4 * 4 = 4^3 + 4^3 + 4^3 + 4^3 = 256.
a(8) = 1134: 2 * 3 * 3 * 7 * 9 = 2^3 + 3^3 + 3^3 + 7^3 + 9^3 = 1134.
		

Crossrefs

Sums of squares only: A380902.

Programs

  • PARI
    a380760_count(x, f=List())={my(r=x/if(#f, vecprod(Vec(f)), 1)); if(r==1, my(c=0); for(p=2, oo, my(t=sum(i=1, #f, f[i]^p)); if(tCharles L. Hohn, Mar 09 2025

Extensions

Edited by Peter Munn, Mar 25 2025

A086556 Lexicographically earliest sequence of pairwise coprime numbers such that tau(a(n)) = n, where tau(k) = number of divisors of k.

Original entry on oeis.org

1, 2, 9, 35, 14641, 2873, 47045881, 20677, 2301289, 160683647, 174887470365513049, 14226847, 16409682740640811134241, 11955403876831, 375917360641, 107972737, 397030588105939686862303733490241, 26979607331, 289048159795659680188475502761294616529, 8398900121459
Offset: 1

Views

Author

Amarnath Murthy, Aug 29 2003

Keywords

Examples

			a(5) = 11^4, tau(14641) = 5 and a(6) = 2873 = 13^2*17 and tau(2873) = 6.
		

Crossrefs

Programs

  • Mathematica
    s[n_, m_] := Module[{e = f[n] - 1}, Min[Times @@@ ((Prime[m + Range[Length[#]]]^#) & /@ Reverse /@ e)]]; a[1] = 1; a[n_] := a[n] = s[n, PrimePi[FactorInteger[a[n-1]][[-1, 1]]]]; Array[a, 20] (* Amiram Eldar, Jul 26 2025 using the function f by T. D. Noe at A162247 *)

Extensions

More terms from David Wasserman, Mar 25 2005
Name clarified and a(19)-a(20) added by Amiram Eldar, Jul 26 2025

A174524 The total number of factors in unordered factorizations of A025487(n).

Original entry on oeis.org

0, 1, 3, 3, 6, 8, 12, 17, 10, 20, 22, 34, 27, 35, 46, 61, 60, 54, 94, 75, 107, 37, 101, 123, 86, 170, 170, 176, 104, 207, 230, 128, 304, 356, 284, 242, 386, 217, 413, 192, 397, 506, 303, 434, 680, 442, 512, 698, 502, 703, 275, 847, 832, 151, 725, 818, 1244, 676, 993, 1190, 1079, 1162, 399, 1654, 1311, 446, 1572, 1501, 1207, 2158, 1007, 917, 1840, 1831, 1980, 2104, 1785, 1859, 1579, 556
Offset: 1

Views

Author

Alford Arnold, Mar 21 2010

Keywords

Comments

A025487(n) has a certain number of unordered factorizations with between 1 and A001222(A025487(n)) factors.
a(n) counts these factors that are > 1. A025487(5) counts 8, 2*4, 2*2*2 with 1+2+3 = 6 = a(5) factors, for example.

Examples

			The table of factorizations in A162247 begins:
  1
  2
  3
  4 2 2
  5
  6 2 3
  7
  8 2 4 2 2 2
  9 3 3
  10 2 5
  11
  12 2 6 3 4 2 2 3
A025487(n) begins 1 2 4 6 8 12 ...
a(n) counts the elements larger than 1 in the A025487(n)-th row of A162247: 0 1 3 3 6 8 ...
		

Crossrefs

Formula

a(n) = A066637(A025487(n)). - R. J. Mathar, Oct 03 2010

Extensions

a(1) corrected and data extended by R. J. Mathar, Oct 03 2010

A304650 Number of ways to write n as a product of two positive integers, neither of which is a perfect power.

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, 2, 0, 2, 2, 0, 0, 2, 0, 2, 2, 2, 0, 2, 1, 2, 0, 2, 0, 6, 0, 0, 2, 2, 2, 5, 0, 2, 2, 2, 0, 6, 0, 2, 2, 2, 0, 2, 1, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 8, 0, 2, 2, 0, 2, 6, 0, 2, 2, 6, 0, 4, 0, 2, 2, 2, 2, 6, 0, 2, 0, 2, 0, 8, 2, 2, 2, 2, 0, 8, 2, 2, 2, 2, 2, 2, 0, 2
Offset: 1

Views

Author

Gus Wiseman, May 15 2018

Keywords

Examples

			The a(60) = 8 ways to write 60 as a product of two numbers, neither of which is a perfect power, are 2*30, 3*20, 5*12, 6*10, 10*6, 12*5, 20*3, 30*2.
		

Crossrefs

Programs

  • Mathematica
    radQ[n_]:=And[n>1,GCD@@FactorInteger[n][[All,2]]===1];
    Table[Length[Select[Divisors[n],radQ[#]&&radQ[n/#]&]],{n,100}]
  • PARI
    ispow(n) = (n==1) || ispower(n);
    a(n) = sumdiv(n, d, !ispow(d) && !ispow(n/d)); \\ Michel Marcus, May 17 2018
Previous Showing 61-70 of 77 results. Next