cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A279294 Number of permutations of [n] having exactly five (possibly overlapping) doubledescents.

Original entry on oeis.org

1, 14, 597, 11486, 265354, 5307274, 110325975, 2250025170, 46909998946, 990648740298, 21419845540563, 473829924582378, 10757656204264520, 250739074393237162, 6005432933786523655, 147819656394632180730, 3739797338380838531829, 97237232835306526768108
Offset: 7

Views

Author

Alois P. Heinz, Dec 09 2016

Keywords

Crossrefs

Column k=5 of A162975.

A279295 Number of permutations of [n] having exactly six (possibly overlapping) doubledescents.

Original entry on oeis.org

1, 16, 1138, 25999, 775195, 18523314, 463088628, 11068300437, 268537592975, 6514804501312, 160541447975710, 4013204668037233, 102267326625073183, 2658365720541599806, 70614284743773530148, 1917874812704472161265, 53294689741358893762638
Offset: 8

Views

Author

Alois P. Heinz, Dec 09 2016

Keywords

Crossrefs

Column k=6 of A162975.

A279296 Number of permutations of [n] having exactly seven (possibly overlapping) doubledescents.

Original entry on oeis.org

1, 18, 2195, 57980, 2234121, 62821766, 1877987735, 52129260840, 1462714640951, 40503784352590, 1131481211125461, 31802909031355052, 905596491625548929, 26146644212681105382, 767446589270204991395, 22921754812832515642328, 697455004277912572544814
Offset: 9

Views

Author

Alois P. Heinz, Dec 09 2016

Keywords

Crossrefs

Column k=7 of A162975.

A279297 Number of permutations of [n] having exactly eight (possibly overlapping) doubledescents.

Original entry on oeis.org

1, 20, 4280, 127917, 6402984, 208910728, 7440888001, 237920318012, 7682498246390, 241437687882797, 7610900307811180, 239466123419848086, 7589962647890648579, 242520044163828141976, 7839783867491553405462, 256717246780820798056943, 8529320594216231644881865
Offset: 10

Views

Author

Alois P. Heinz, Dec 09 2016

Keywords

Crossrefs

Column k=8 of A162975.

A279298 Number of permutations of [n] having exactly nine (possibly overlapping) doubledescents.

Original entry on oeis.org

1, 22, 8417, 279850, 18342412, 685212762, 29029313611, 1061113063498, 39275632545209, 1393699927780248, 49383101195522106, 1732429335364441968, 60909095747242747307, 2146854079671345945398, 76207802610167861527865, 2728392333397142478341958
Offset: 11

Views

Author

Alois P. Heinz, Dec 09 2016

Keywords

Crossrefs

Column k=9 of A162975.

A279299 Number of permutations of [n] having exactly ten (possibly overlapping) doubledescents.

Original entry on oeis.org

1, 24, 16654, 607995, 52687209, 2225347678, 112136485958, 4652156989635, 196794669764694, 7848158942463262, 311532163358831142, 12142236428089109402, 472096448836605015907, 18301483090810860748890, 711486425957970444213722, 27780774432495984165279729
Offset: 12

Views

Author

Alois P. Heinz, Dec 09 2016

Keywords

Crossrefs

Column k=10 of A162975.

A334257 Triangle read by rows: T(n,k) is the number of ordered pairs of n-permutations with exactly k common double descents, n>=0, 0<=k<=max{0,n-2}.

Original entry on oeis.org

1, 1, 4, 35, 1, 545, 30, 1, 13250, 1101, 48, 1, 463899, 51474, 2956, 70, 1, 22106253, 3070434, 217271, 7545, 96, 1, 1375915620, 229528818, 19372881, 864632, 20322, 126, 1, 108386009099, 21107789247, 2070917370, 113587335, 3530099, 61089, 160, 1
Offset: 0

Views

Author

Geoffrey Critzer, Apr 26 2020

Keywords

Comments

An ordered pair of n-permutations ((a_1,a_2,...,a_n),(b_1,b_2,...,b_n)) has a common double descent at position i, 1<=i<=n-2, if a_i > a_i+1 > a_i+2 and b_i > b_i+1 > b_i+2.

Examples

			T(4,1) = 30:  There are 9 such ordered pairs formed from the permutations 3421,2431,1432.  There are 9 such ordered pairs formed from the permutations 4312,4213,3214.  Then pairing each of these 6 permutations with 4321 gives 12 more ordered pairs with exactly 1 common double descent.  9+9+12 = 30.
Triangle T(n,k) begins:
       1;
       1;
       4;
      35,     1;
     545,    30,    1;
   13250,  1101,   48,  1;
  463899, 51474, 2956, 70, 1;
  ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Volume I, Second Edition, example 3.18.3e, page 366.

Crossrefs

Column k=0 gives A334412.

Programs

  • Maple
    b:= proc(n, u, v, t) option remember; expand(`if`(n=0, 1,
          add(add(b(n-1, u-j, v-i, x)*t, i=1..v)+
              add(b(n-1, u-j, v+i-1, 1), i=1..n-v), j=1..u)+
          add(add(b(n-1, u+j-1, v-i, 1), i=1..v)+
              add(b(n-1, u+j-1, v+i-1, 1), i=1..n-v), j=1..n-u)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2, 1)):
    seq(T(n), n=0..10);  # Alois P. Heinz, Apr 26 2020
  • Mathematica
    nn = 8; a = Apply[Plus,Table[Normal[Series[y x^3/(1 - y x - y x^2), {x, 0, nn}]][[n]]/(n +2)!^2, {n, 1, nn - 2}]] /. y -> y - 1; Map[Select[#, # > 0 &] &,
      Range[0, nn]!^2 CoefficientList[Series[1/(1 - x - a), {x, 0, nn}], {x, y}]] // Grid
Previous Showing 11-17 of 17 results.