A166574 If p, q are successive primes, and there is a number k with p < k <= q such that r = p+k is a prime, then r is in the sequence.
5, 7, 11, 17, 23, 29, 41, 47, 59, 67, 83, 89, 97, 107, 109, 127, 137, 149, 151, 167, 179, 181, 197, 227, 229, 233, 239, 257, 263, 281, 283, 307, 317, 337, 347, 349, 359, 367, 383, 389, 401, 409, 431, 433, 449, 461, 467, 479, 487, 491
Offset: 1
Keywords
A182391 Numbers n for which A104272(n) = A080359(n).
1, 9, 11, 18, 22, 23, 25, 30, 32, 34, 35, 37, 38, 41, 46, 47, 48, 49, 52, 53, 54, 63, 64, 66, 70, 75, 76, 79, 80, 82, 84, 94, 98, 99, 101, 102, 105, 108, 109, 110, 113, 114, 115, 124, 127, 128, 131, 135, 136, 139, 140, 148, 149, 150, 151, 154, 156, 158, 160
Offset: 1
Keywords
Comments
Formula
A194217(n)=0.
A166575
Primes p>=5 with the property: if Prime(k)=Prime(k)+ Prime(k+1).
5, 13, 19, 31, 37, 43, 53, 61, 71, 73, 79, 101, 103, 113, 131, 139, 157, 163, 173, 191, 193, 199, 211, 223, 241, 251, 269, 271, 277, 293, 311, 313, 331, 353, 373, 379, 397, 419, 421, 439, 443, 457, 463, 499, 509, 521, 523, 541, 577, 601, 607, 613, 619, 631, 653, 659, 661, 673, 691
Offset: 1
Keywords
Comments
If A(x) is the counting function of a(n) not exceeding x, then, in view of the symmetry, it is natural to conjecture that A(x)~pi(x)/2.
Examples
Let p=13. Then we have 5<13/2<7. Since 13>5+7, then 13 is in the sequence.
Crossrefs
Programs
-
Mathematica
Reap[Do[p=Prime[n]; k=PrimePi[p/2]; If[p>=Prime[k]+Prime[k+1], Sow[p]], {n,3,PrimePi[1000]}]][[2,1]]
A182392 Numbers n for which there exists only composite number k such that A060715(k) = n and 2*k-1 is prime, but A104272(n) differs from A080359(n).
3, 8, 36, 55, 58, 83, 129, 134, 143, 155, 186, 197, 207, 218, 269, 295, 309, 310, 361, 362, 380, 396, 412, 454, 466, 473, 505, 511, 514, 544, 549, 556, 563, 616, 631, 660, 666, 677, 683, 697, 771, 781, 788, 797, 812, 873, 874, 881, 883, 894, 906, 953
Offset: 1
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Extensions