cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A165960 Number of permutations of length n without modular 3-sequences.

Original entry on oeis.org

1, 1, 2, 3, 20, 100, 612, 4389, 35688, 325395, 3288490, 36489992, 441093864, 5770007009, 81213878830, 1223895060315, 19662509071056, 335472890422812, 6057979285535388, 115434096553014565, 2314691409652237700, 48723117262650147387, 1074208020519710570054
Offset: 0

Views

Author

Isaac Lambert, Oct 01 2009

Keywords

Comments

Modular 3-sequences are of the following form: i,i+1,i+2, where arithmetic is modulo n.

Examples

			For n=3 the a(3) = 3 solutions are (0,2,1), (1,0,2) and (2,1,0).
		

Crossrefs

Formula

a(n) = n * A165961(n).

Extensions

a(0)-a(2) and a(15)-a(22) from Alois P. Heinz, Apr 14 2021

A216722 Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 1 and length 3 (n >= 3, 0 <= k <= n).

Original entry on oeis.org

1, 0, 0, 1, 5, 0, 0, 0, 1, 18, 5, 0, 0, 0, 1, 95, 18, 6, 0, 0, 0, 1, 600, 84, 28, 7, 0, 0, 0, 1, 4307, 568, 116, 40, 8, 0, 0, 0, 1, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
       1,     0,    0,    1;
       5,     0,    0,    0,   1;
      18,     5,    0,    0,   0,  1;
      95,    18,    6,    0,   0,  0,  1;
     600,    84,   28,    7,   0,  0,  0, 1;
    4307,   568,  116,   40,   8,  0,  0, 0, 1;
   35168,  4122,  810,  156,  54,  9,  0, 0, 0, 1;
  321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1;
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Columns 1..2 are A165962, A216723.
Row sums are A000142(n-1).

A174083 Number of circular permutations of length n with no consecutive triples (i, i+d, i+2d) (mod n) for all d.

Original entry on oeis.org

4, 0, 40, 168, 1652, 9408, 117896, 1019260, 12737856, 140794368, 2072921376, 25990014896, 439692361160
Offset: 4

Views

Author

Isaac Lambert, Mar 15 2010

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n.

Examples

			For n=5 since a(5)=0 all (5-1)! = 24 circular permutations of length 5 have some consecutive triple (i, i+d, i+2d) (mod 5). For example, the permutation (0,4,2,1,3) has a triple (1,3,0) with d=2. This is clearly a special case.
		

Crossrefs

Extensions

a(10)-a(13) from Andrey Goder, Jul 03 2022
a(14)-a(16) from Bert Dobbelaere, May 18 2025

A216723 Second column of A216722.

Original entry on oeis.org

0, 0, 5, 18, 84, 568, 4122, 33910
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Previous Showing 11-14 of 14 results.