cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A256423 Consider numbers n such that A166133(n) sets a new record and also satisfies A166133(n)=A166133(n-1)^2-1; sequence gives values of A166133(n).

Original entry on oeis.org

8, 39203, 72899, 324899, 359999, 675683, 777923, 1127843, 4536899, 6718463, 10036223, 30272003, 44916803, 54022499, 100761443, 108743183, 110249999, 212051843, 233722943, 289952783, 326163599, 388011203, 395612099, 431475983
Offset: 1

Views

Author

N. J. A. Sloane, Apr 08 2015

Keywords

Comments

A subsequence of A256403.
The points (A256422(i), A256423(i)) form the upper envelope of A166133.

Examples

			A166133(5) = 8 = A166133(4)^2-1 = 9-1.
		

Crossrefs

A256541 First differences of A166133.

Original entry on oeis.org

1, 2, -1, 5, -1, -1, -1, 7, -1, -1, -1, 7, -1, -1, -1, 8, -1, -1, -1, -1, 7, -1, -1, 47, -41, -1, -1, -1, 14, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 133, -121, -1, -1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 01 2015

Keywords

Comments

a(n) != 0; abs(a(A256543(n))) = 1.

Crossrefs

Programs

  • Haskell
    a256541 n = a256541_list !! (n-1)
    a256541_list = zipWith (-) (tail a166133_list) a166133_list

A256557 a(n) = A166133(n)^2 - 1.

Original entry on oeis.org

0, 3, 15, 8, 63, 48, 35, 24, 143, 120, 99, 80, 255, 224, 195, 168, 440, 399, 360, 323, 288, 575, 528, 483, 4760, 783, 728, 675, 624, 1520, 1443, 1368, 1295, 1224, 1155, 1088, 1023, 960, 899, 840, 1599, 1680, 1763, 1848, 1935, 2024, 2115, 2208
Offset: 1

Views

Author

Bob Selcoe, Apr 01 2015

Keywords

Comments

Let A166133 = B; A166133 is defined as: After b(1)=1, b(2)=2, and b(3)=4, b(n+1) is the smallest divisor of b(n)^2-1 that has not yet appeared in the sequence.
Since it is conjectured that A166133 is a permutation of the natural numbers, it is therefore conjectured that this sequence is a permutation of all numbers of the form n^2-1.

Crossrefs

Programs

  • Mathematica
    s = {1, 2, 4}; Do[d = Divisors[Last[s]^2 - 1]; i = 1; While[i <= Length[d] && MemberQ[s, d[[i]]], i++]; s = Append[s, d[[i]]], {5000}]; t = Table[s[[k]], {k, 1, 5000}]; #^2 - 1 & /@ t; (* Michael De Vlieger, Apr 02 2015, after Hans Havermann at A166133 *)

Formula

a(n) = A166133(n+1)*A256559(n)

A256561 Indices of primes in A166133.

Original entry on oeis.org

2, 4, 8, 6, 10, 16, 21, 19, 23, 40, 38, 32, 42, 44, 48, 54, 60, 62, 68, 80, 78, 72, 91, 111, 114, 88, 86, 120, 118, 130, 137, 133, 150, 152, 168, 162, 97, 192, 188, 182, 176, 186, 160, 215, 280, 291, 122, 226, 222, 220, 240, 263, 275, 300, 245, 277, 329, 257
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2015

Keywords

Crossrefs

Programs

  • Haskell
    a256561 = (+ 1) . fromJust . (`elemIndex` a166133_list) . a000040

Formula

a(n) = A255833(A000040(n)). - Ray Chandler, Apr 14 2015

A256563 Indices of semiprimes in A166133.

Original entry on oeis.org

3, 7, 12, 11, 15, 14, 17, 24, 29, 28, 36, 35, 34, 31, 30, 47, 50, 52, 56, 58, 59, 63, 66, 25, 77, 74, 92, 89, 102, 101, 109, 107, 106, 105, 83, 116, 128, 125, 124, 143, 142, 141, 135, 131, 147, 154, 155, 156, 103, 171, 99, 96, 95, 145, 189, 259, 178, 177
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2015

Keywords

Crossrefs

Programs

  • Haskell
    a256563 = (+ 1) . fromJust . (`elemIndex` a166133_list) . a001358

Formula

a(n) = A255833(A001358(n)). - Ray Chandler, Apr 14 2015

A256564 Smallest prime factor of A166133(n).

Original entry on oeis.org

1, 2, 2, 3, 2, 7, 2, 5, 2, 11, 2, 3, 2, 3, 2, 13, 3, 2, 19, 2, 17, 2, 23, 2, 3, 2, 3, 2, 5, 3, 2, 37, 2, 5, 2, 3, 2, 31, 2, 29, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, 3, 2, 53, 2, 5, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 2, 79, 2, 7, 2, 3, 2, 73, 2, 71
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2015

Keywords

Comments

a(n) = A020639(A166133(n)).

Crossrefs

Programs

  • Haskell
    a256564 = a020639 . a166133

A256578 Largest proper divisor of A166133(n).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 3, 1, 6, 1, 5, 3, 8, 5, 7, 1, 7, 10, 1, 9, 1, 12, 1, 11, 23, 14, 9, 13, 5, 13, 19, 1, 18, 7, 17, 11, 16, 1, 15, 1, 20, 1, 21, 1, 22, 15, 23, 1, 24, 7, 25, 17, 26, 1, 27, 11, 28, 19, 29, 1, 30, 1, 31, 21, 32, 13, 33, 1, 34, 67, 40, 1, 39, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 02 2015

Keywords

Comments

a(n) = A032742(A166133(n)).

Crossrefs

Programs

  • Haskell
    a256578 = a032742 . a166133

A256703 Numbers m such that A166133(m+1) = A166133(m)^2 - 1.

Original entry on oeis.org

4, 292, 330, 615, 625, 744, 982, 1075, 1671, 2176, 2389, 2820, 2937, 3228, 3598, 4187, 6590, 7803, 9960, 10173, 11628, 13140, 13396, 14035, 15588, 16396, 17766, 18813, 19858, 21111, 21115, 21246, 22808, 23241, 24784, 25050, 25149, 25167, 25384
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 08 2015

Keywords

Crossrefs

Cf. A166133.

Programs

  • Haskell
    import Data.List (findIndices)
    a256703 n = a256703_list !! (n-1)
    a256703_list = map (+ 1) $ findIndices (\(u, v) -> v == u^2-1) $
                               zip a166133_list (tail a166133_list)

A256542 Number of divisors of A166133(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 2, 4, 2, 6, 2, 4, 3, 5, 4, 4, 2, 4, 6, 2, 6, 2, 8, 2, 4, 4, 6, 4, 4, 3, 4, 4, 2, 9, 4, 4, 4, 6, 2, 8, 2, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 10, 2, 8, 4, 6, 6, 4, 2, 12, 2, 8, 4, 4, 8, 8
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 03 2015

Keywords

Comments

a(n) = A000005(A166133(n)).

Crossrefs

Programs

  • Haskell
    a256542 = a000005 . a166133

A256559 a(n) = A256557(n)/A166133(n+1), n>=3.

Original entry on oeis.org

5, 1, 9, 8, 7, 2, 13, 12, 11, 5, 17, 16, 15, 8, 22, 21, 20, 19, 12, 25, 24, 7, 170, 29, 28, 27, 16, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 21, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 23, 505, 81, 80, 79, 78, 77, 76, 75, 74, 73
Offset: 3

Views

Author

Bob Selcoe, Apr 01 2015

Keywords

Comments

Let A166133 = B; A166133 is defined as: After b(1)=1, b(2)=2, and b(3)=4, b(n+1) is the smallest divisor of b(n)^2-1 that has not yet appeared in the sequence.
A256557(n) = A166133(n)^2-1. Therefore, a(n) = (A166133(n)^2-1)/A166133(n+1), n>=3; that is, a(n) is A256557(n) divided by the smallest divisor of A166133(n+1)^2-1 which has not yet appeared in A166133. For example, a(12) = 5 means that 5 is A256557(12) = A166133(12)^2-1 = 80 divided its smallest divisor which has not yet appeared in A166133 (i.e., 16).

Examples

			a(13) = 17 because A256557(13)/A166133(14) = 255/15 = 17.
		

Crossrefs

Programs

  • Mathematica
    lim = 200; s = {1, 2, 4}; Do[d = Divisors[Last[s]^2 - 1]; i = 1; While[i <= Length[d] && MemberQ[s, d[[i]]], i++]; s = Append[s, d[[i]]], {lim}]; a166133 = Table[s[[k]], {k, 1, lim}]; a256557 = #^2 - 1 & /@ a166133; t = PadLeft[Most@a256557, lim]; Drop[t/a166133, 3] (* Michael De Vlieger, Apr 02 2015, after Hans Havermann at A166133 *)
Previous Showing 11-20 of 25 results. Next