cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A279776 Numbers n such that the sum of digits of 6n equals 12.

Original entry on oeis.org

8, 11, 14, 23, 26, 29, 32, 38, 41, 44, 47, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 86, 89, 92, 95, 101, 104, 107, 110, 119, 122, 125, 134, 137, 140, 152, 155, 173, 176, 179, 182, 188, 191, 194, 197, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 236
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088408 = A062768/6 and A279769 (the analog for 9).

Crossrefs

Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 240, Total@ IntegerDigits[6 #] == 12 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(6*n)==12

A283742 Numbers with digit sum 11 that are multiples of 11.

Original entry on oeis.org

209, 308, 407, 506, 605, 704, 803, 902, 2090, 3080, 4070, 5060, 6050, 7040, 8030, 9020, 10109, 10208, 10307, 10406, 10505, 10604, 10703, 10802, 10901, 20009, 20108, 20207, 20306, 20405, 20504, 20603, 20702, 20801, 20900, 30008, 30107, 30206, 30305, 30404
Offset: 1

Views

Author

Zak Seidov, Mar 15 2017

Keywords

Comments

Subsequence of A166311.
Numbers with digit sum 11 and even-numbered digits all 0. - Robert Israel, Mar 16 2017
Intersection of A008593 and A166311. - Michel Marcus, Mar 17 2017
If m is a term, so is 10*m. - Zak Seidov, Mar 17 2017

Examples

			a(1) = A166311(18) = 209 = 19*11,
a(40) = A166311(9881) = 30404 = 2764*11.
		

Crossrefs

Cf. A008593 (multiples of 11), A166311 (numbers with digit sum 11).

Programs

  • Maple
    F:= proc(d,t) option remember;
    if d <= 1 then
      if t <= 9 then return [t*10^d] else return [] fi;
    fi;
    [seq(seq(j*10^d+s, s = procname(d-2, t-j)), j=0..min(9, t))]
    end proc:
    sort([op(F(4,11)),op(F(5,11))]); # Robert Israel, Mar 16 2017
  • Mathematica
    Reap[Do[If[11==Total[IntegerDigits[m=11*k]],Sow[m]],{k,3000}]][[2,1]]
    Select[Range[209,30404,11],11==Total[IntegerDigits[#]]&]

A375460 Lexicographically earliest sequence of distinct nonnegative terms arranged in successive chunks whose digitsum = 10.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 10, 11, 20, 6, 12, 100, 7, 21, 8, 101, 9, 1000, 13, 14, 10000, 15, 22, 16, 30, 17, 110, 18, 100000, 19, 23, 31, 1000000, 24, 40, 25, 102, 26, 200, 27, 10000000, 28, 32, 41, 33, 103, 34, 111, 35, 1001, 36, 100000000, 37, 42, 112, 43, 120, 44, 1010, 45, 1000000000
Offset: 1

Views

Author

Eric Angelini, Aug 15 2024

Keywords

Comments

The first integer that will never appear in the sequence is 29, as its digitsum exceeds 10.
From Michael S. Branicky, Aug 16 2024: (Start)
Infinite since A052224 is infinite (as are all sequences with digital sum 1..10).
a(6492) has 1001 digits. (End)

Examples

			The first chunk of integers with digitsum 10 is (0,1,2,3,4);
the next one is (5,10,11,20),
the next one is (6,12,100),
the next one is (7,21),
the next one is (8,101),
the next one is (9,1000),
the next one is (13,14,10000), etc.
The concatenation of the above chunks produce the sequence.
		

Crossrefs

Numbers with digital sum 1..10: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10).

Programs

  • Python
    from itertools import islice
    def bgen(ds): # generator of terms with digital sum ds
        def A051885(n): return ((n%9)+1)*10**(n//9)-1 # due to Chai Wah Wu
        def A228915(n): # due to M. F. Hasler
            p = r = 0
            while True:
                d = n % 10
                if d < 9 and r: return (n+1)*10**p + A051885(r-1)
                n //= 10; r += d; p += 1
        k = A051885(ds)
        while True: yield k; k = A228915(k)
    def agen(): # generator of terms
        an, ds_block = 0, 0
        dsg = [None] + [bgen(i) for i in range(1, 11)]
        dsi = [None] + [(next(dsg[i]), i) for i in range(1, 11)]
        while True:
            yield an
            an, ds_an = min(dsi[j] for j in range(1, 11-ds_block))
            ds_block = (ds_block + ds_an)%10
            dsi[ds_an] = (next(dsg[ds_an]), ds_an)
    print(list(islice(agen(), 61))) # Michael S. Branicky, Aug 16 2024

Extensions

a(46) and beyond from Michael S. Branicky, Aug 16 2024.

A279771 Numbers n such that the sum of digits of 11n equals 11.

Original entry on oeis.org

19, 28, 37, 46, 55, 64, 73, 82, 190, 280, 370, 460, 550, 640, 730, 820, 919, 928, 937, 946, 955, 964, 973, 982, 991, 1819, 1828, 1837, 1846, 1855, 1864, 1873, 1882, 1891, 1900, 2728, 2737, 2746, 2755, 2764, 2773, 2782, 2791, 2800, 3637, 3646, 3655, 3664
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088404 = A069537/2 through A088410 = A069543/8.

Crossrefs

Cf. A007953 (digital sum), Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).

Programs

  • Mathematica
    Select[Range@ 3664, Total@IntegerDigits[11 #] == 11 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(11*n)==11

A346221 Palindromes that are multiples of 11 and whose digit sum is also a multiple of 11.

Original entry on oeis.org

2992, 3883, 4774, 5665, 6556, 7447, 8338, 9229, 10901, 20702, 30503, 40304, 50105, 70807, 80608, 90409, 119911, 128821, 137731, 146641, 155551, 164461, 173371, 182281, 191191, 209902, 218812, 227722, 236632, 245542, 254452, 263362, 272272, 281182, 290092, 308803
Offset: 1

Views

Author

Tanya Khovanova, Jul 11 2021

Keywords

Comments

Palindromes in A216995.

Examples

			11 is a palindrome that is a multiple of 11, but its digit sum is not divisible by 11. Thus, 11 is not in this sequence.
		

Crossrefs

Cf. A002113, A083513, A166311 (halves of even length terms), A216995.

Programs

  • Mathematica
    Select[Range[400000], PalindromeQ[#] && IntegerQ[#/11] && IntegerQ[Total[IntegerDigits[#]]/11] &]
  • PARI
    isok(m) = my(d=digits(m)); (Vecrev(d) == d) && !(m % 11) && !(vecsum(d) % 11); \\ Michel Marcus, Aug 06 2021
  • Python
    from itertools import product
    def sd(n): return sum(map(int, str(n)))
    def pals(d, base=10): # all positive d-digit palindromes
        digits = "".join(str(i) for i in range(base))
        for p in product(digits, repeat=d//2):
            if d > 1 and p[0] == "0": continue
            left = "".join(p); right = left[::-1]
            for mid in [[""], digits][d%2]:
                t = int(left + mid + right)
                if t > 0: yield t
    def ok(pal): return pal%11 == 0 and sd(pal)%11 == 0
    print([p for d in range(1, 7) for p in pals(d) if ok(p)]) # Michael S. Branicky, Jul 11 2021
    

A357935 Primes p such that the sum of digits of 11*p is 11.

Original entry on oeis.org

19, 37, 73, 919, 937, 991, 1873, 2791, 3637, 3673, 3691, 4591, 6373, 8191, 91837, 91873, 92737, 92791, 93637, 94573, 181837, 181873, 181891, 182773, 183637, 183691, 185491, 186391, 187273, 272737, 274591, 275491, 276373, 277273, 278191, 363691, 365473, 367273, 455473, 455491, 458191, 459091
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Oct 21 2022

Keywords

Comments

Primes in A279771.
All terms == 1 (mod 18).
Includes (8*10^k+3)/11 for k = 2, 6, 60, 320, 600. Any others?

Examples

			a(3) = 73 is a term because 73 is prime and 11*73 = 803 with 8+0+3 = 11.
		

Crossrefs

Programs

  • Maple
    filter:= proc(p) convert(convert(11*p,base,10),`+`) = 11 and isprime(p):
    select(filter, [seq(i,i=1..10^6,18)]);
  • Mathematica
    Select[Prime[Range[40000]], Plus @@ IntegerDigits[11*#] == 11 &] (* Amiram Eldar, Oct 21 2022 *)
Previous Showing 31-36 of 36 results.