A247213 Numbers n = Product_(p_i^e_i) such that nn = Product_((p_i + 2)^e_i) is divisible by n.
1, 2, 4, 8, 16, 32, 64, 105, 128, 210, 256, 315, 420, 512, 630, 840, 1024, 1260, 1575, 1680, 2048, 2520, 3150, 3360, 4096, 5040, 6300, 6720, 8192, 10080, 11025, 12600, 13440, 16384, 20160, 22050, 25200, 26880, 32768, 33075, 40320, 44100, 50400, 53760, 65536
Offset: 1
Keywords
Examples
A166590(2)=4 is divisible by 2, so 2 is in the sequence. A166590(105) = A166590(3*5*7) = 5*7*9 = 3*(3*5*7), so 105 is in the sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..164
Programs
-
Mathematica
a247213[n_] := Select[Range@n, Mod[Times @@ Power @@@ Transpose[{Plus[First /@ FactorInteger@#, 2], Last /@ FactorInteger@#}], #] == 0 &]; a247213[2^16] (* Michael De Vlieger, Jan 07 2015 *)
-
PARI
isok(n) = { f = factor(n); for (i=1, #f~, f[i,1] += 2); newn = factorback(f); newn % n == 0;}
-
Python
from operator import mul from functools import reduce from sympy import factorint A247213_list = [n for n in range(1,10**4) if n <= 1 or not reduce(mul,[(p+2)**e for p,e in factorint(n).items()]) % n] # Chai Wah Wu, Jan 05 2015
Comments