cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A247213 Numbers n = Product_(p_i^e_i) such that nn = Product_((p_i + 2)^e_i) is divisible by n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 105, 128, 210, 256, 315, 420, 512, 630, 840, 1024, 1260, 1575, 1680, 2048, 2520, 3150, 3360, 4096, 5040, 6300, 6720, 8192, 10080, 11025, 12600, 13440, 16384, 20160, 22050, 25200, 26880, 32768, 33075, 40320, 44100, 50400, 53760, 65536
Offset: 1

Views

Author

Michel Marcus, after a suggestion from Thomas Ordowski, Nov 26 2014

Keywords

Comments

That is, numbers n, such that A166590(n) is divisible by n.
A000079, powers of 2, is a subsequence.
Thomas Ordowski remarks that the only squarefrees of this sequence are: 1, 2, 105, and 210.

Examples

			A166590(2)=4 is divisible by 2, so 2 is in the sequence.
A166590(105) = A166590(3*5*7) = 5*7*9 = 3*(3*5*7), so 105 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    a247213[n_] := Select[Range@n, Mod[Times @@ Power @@@ Transpose[{Plus[First /@ FactorInteger@#, 2], Last /@ FactorInteger@#}], #] == 0 &]; a247213[2^16] (* Michael De Vlieger, Jan 07 2015 *)
  • PARI
    isok(n) = { f = factor(n); for (i=1, #f~, f[i,1] += 2); newn = factorback(f);  newn % n == 0;}
    
  • Python
    from operator import mul
    from functools import reduce
    from sympy import factorint
    A247213_list = [n for n in range(1,10**4) if n <= 1 or not reduce(mul,[(p+2)**e for p,e in factorint(n).items()]) % n]
    # Chai Wah Wu, Jan 05 2015

A359530 Multiplicative with a(p^e) = (p + 4)^e.

Original entry on oeis.org

1, 6, 7, 36, 9, 42, 11, 216, 49, 54, 15, 252, 17, 66, 63, 1296, 21, 294, 23, 324, 77, 90, 27, 1512, 81, 102, 343, 396, 33, 378, 35, 7776, 105, 126, 99, 1764, 41, 138, 119, 1944, 45, 462, 47, 540, 441, 162, 51, 9072, 121, 486, 147, 612, 57, 2058, 135, 2376, 161
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 26 2023

Keywords

Crossrefs

Cf. A166589 (multiplicative with a(p^e) = (p-3)^e), A166586 (p-2), A003958 (p-1), A000027 (p), A003959 (p+1), A166590 (p+2), A166591 (p+3).

Programs

  • Mathematica
    g[p_, e_] := (p + 4)^e; a[1] = 1; a[n_] := Times @@ g @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/(1-p*X-4*X))[n], ", "))
    
  • Python
    from math import prod
    from sympy import factorint
    def A359530(n): return prod((p+4)**e for p, e in factorint(n).items()) # Chai Wah Wu, Feb 26 2023

Formula

Dirichlet g.f.: Product_{primes p} 1 / (1 - p^(1-s) - 4*p^(-s)).
Dirichlet g.f.: zeta(s-1) * (1 + 4/(2^s - 6)) * Product_{primes p, p>2} (1 + 4/(p^s - p - 4)).
Sum_{k=1..n} a(k) has an average value 2*c*zeta(r-1) * n^r / (3*log(6)), where r = 1 + log(3)/log(2) = 2.5849625007211561814537389439478165... and c = Product_{primes p, p>2} (1 + 4/(p^r - p - 4)) = 1.5747380964592139...
Previous Showing 21-22 of 22 results.