cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A295612 a(n) = Sum_{k=0..n} binomial(n+k,k)^k.

Original entry on oeis.org

1, 3, 40, 8105, 24053106, 1016507243472, 622366942086680904, 5608321882919220905812521, 752711651805019773658037206391596, 1518219710649896586598445898967340890577318, 46343146356260529633020448755386347142785083052620084
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + k, k]^k, {k, 0, n}], {n, 0, 10}]
    Table[Sum[((n + k)!/(n! k!))^k, {k, 0, n}], {n, 0, 10}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+k,k)^k); \\ Michel Marcus, Nov 25 2017

Formula

a(n) = Sum_{k=0..n} A046899(n,k)^k.
a(n) ~ 2^(2*n^2) / (exp(1/8) * Pi^(n/2) * n^(n/2)). - Vaclav Kotesovec, Nov 25 2017

A345040 a(n) = Sum_{k=0..n} Stirling2(n,k)^k.

Original entry on oeis.org

1, 2, 3, 12, 268, 25853, 19339964, 68901690994, 1638901380861357, 363916628499805466764, 384738112277336112497203088, 4821999492342155731355029409443825, 448660704121129122524211570743600451959266, 270068948293205668896252888517768674319536620944042
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[StirlingS2[n, k]^k, {k, 0, n}], {n, 0, 13}]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 2)^k) \\ Felix Fröhlich, Jun 06 2021

A358496 a(n) = Sum_{k=0..n} binomial(binomial(n, k), k).

Original entry on oeis.org

1, 2, 3, 7, 24, 176, 2623, 79479, 5141566, 669156932, 178757299486, 104033138190939, 125893536876304530, 320091464865316176891, 1828276720220263211454403, 22393381352339181425954204921, 582288411818399885839904060337943, 34678571156322738984042119670750665153
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[Binomial[n, k], k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(binomial(n, k), k)); \\ Michel Marcus, Nov 19 2022

Formula

Limit_{n->infinity} a(n)^(1/n^2) = r^(r^2/(1-2*r)) = 1.533628065110458582..., where r = A220359 = 0.70350607643066243096929661621777... is the real root of the equation (1-r)^(2*r-1) = r^(2*r).
Previous Showing 11-13 of 13 results.