cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A200659 Triangle T(n,k), read by rows, given by (1,2,2,3,3,4,4,5,5,6,6,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 71, 132, 76, 16, 1, 461, 955, 670, 200, 25, 1, 3447, 7782, 6309, 2374, 435, 36, 1, 29093, 70441, 63833, 28413, 6713, 833, 49, 1, 273343, 701352, 694500, 351512, 99868, 16240, 1456, 64, 1
Offset: 0

Views

Author

Philippe Deléham, Nov 20 2011

Keywords

Examples

			Triangle begins :
1
1, 1
3, 4, 1
13, 21, 9, 1
71, 132, 76, 16, 1
461, 955, 670, 200, 25, 1
3447, 7782, 6309, 2374, 435, 36, 1
29093, 70441, 63833, 28413, 6713, 833, 49, 1
273343, 701352, 694500, 351512, 99868, 16240, 1456, 64, 1
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A153881(n+1), A000007(n), A003319(n), A111537(n), A111546(n), A111556(n), A177354(n-1) for x = -2,-1,0,1,2,3,4 respectively.
Sum_ {k, 0<=k<=n} T(n,k)*x^(n-k) = A000012(n), A111537(n), A167872(n) for x = 0,1,2 respectively.
T(k+1,k)=(k+1)^2.

A268163 Number of labeled binary-ternary rooted non-planar trees, indexed by number of leaves.

Original entry on oeis.org

0, 1, 1, 4, 25, 220, 2485, 34300, 559405, 10525900, 224449225, 5348843500, 140880765025, 4063875715900, 127418482316125, 4314607214417500, 156920190449147125, 6100643259005795500, 252476539015516440625, 11081983532721088487500, 514215436341672155715625
Offset: 0

Views

Author

Murray R. Bremner, Jan 27 2016

Keywords

Comments

This can also be interpreted as the number of multilinear monomials of degree n in a nonassociative algebra with an (anti)commutative binary operation and a completely (skew-)symmetric ternary operation; the number of variables in the monomial corresponds to the number of leaves in the tree.
This sequence also enumerates a certain class of Feynman diagrams; see the references, links, and crossrefs below.

Examples

			For n = 4 and using the monomial interpretation, the 25 multilinear monomials of degree 4 are as follows, where [-,-] is the binary operation and (-,-,-) is the ternary operation:
[[[a,b],c],d], [[[a,b],d],c], [[[a,c],b],d], [[[a,c],d],b], [[[a,d],b],c], [[[a,d],c],b], [[[b,c],a],d], [[[b,c],d],a], [[[b,d],a],c], [[[b,d],c],a], [[[c,d],a],b], [[[c,d],b],a], [[a,b],[c,d]], [[a,c],[b,d]], [[a,d],[b,c]], [(a,b,c),d], [(a,b,d),c], [(a,c,d),b], [(b,c,d),a], ([a,b],c,d), ([a,c],b,d), ([a,d],b,c), ([b,c],a,d), ([b,d],a,c), ([c,d],a,b).
		

References

  • J. Bedford, On Perturbative Field Theory and Twistor String Theory, Ph.D. Thesis, 2007, Queen Mary, University of London.
  • B. Feng and M. Luo, An introduction to on-shell recursion relations, Review Article, Frontiers of Physics, October 2012, Volume 7, Issue 5, pp. 533-575.
  • K. Kampf, A new look at the nonlinear sigma model, 17th International Conference in Quantum Chromodynamics (QCD 14), Nuclear and Particle Physics Proceedings, Volumes 258-259, January-February 2015, pp. 86-89.
  • M. L. Mangano and S. J. Parke, Multi-parton amplitudes in gauge theories, Physics Reports, Volume 200, Issue 6, February 1991, pp. 301-367.

Crossrefs

Cf. A001147. The number of labeled binary rooted non-planar trees.
Cf. A025035. The number of labeled ternary rooted non-planar trees.
Cf. A268172. The corresponding number of unlabelled trees.
Cf. A005411. Number of non-vanishing Feynman diagrams of order 2n for the electron or the photon propagators in quantum electrodynamics.
Cf. A005412. Number of non-vanishing Feynman diagrams of order 2n for the vacuum polarization (the proper two-point function of the photon) and for the self-energy (the proper two-point function of the electron) in quantum electrodynamics (QED).
Cf. A005413. Number of non-vanishing Feynman diagrams of order 2n+1 for the electron-electron-photon proper vertex function in quantum electrodynamics (QED).
Cf. A005414. Feynman diagrams of order 2n with vertex skeletons.
Other sequences related to Feynman diagrams: A115974, A122023, A167872, A214298, A214299.
Cf. A000311.

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, v) option remember; `if`(n=0,
          `if`(v=0, 1, 0), `if`(i<1 or v<1 or nAlois P. Heinz, Jan 28 2016
    # second Maple program:
    a:= proc(n) option remember; `if`(n<3, [0, 1$2][n+1],
           ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11)
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 28 2016
  • Mathematica
    a[0]=0; a[1]=1; a[2]=1; a[n_]:=a[n]=(12(2n-3)a[n-1]+(3n-5)(3n-7)a[n-2])/11; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Formula

a(n) = ((24*n-36)*a(n-1)+(3*n-5)*(3*n-7)*a(n-2))/11 for n>2. - Alois P. Heinz, Jan 28 2016
Because of Koszul duality for operads, the exponential generating function is the compositional inverse of the power series x-x^2/2-x^3/6 (email of Vladimir Dotsenko to Murray R. Bremner, Jan 28 2016).
a(n) ~ sqrt(9-4*sqrt(3)) * ((12+9*sqrt(3))/11)^n * n^(n-1) / (3 * exp(n)). - Vaclav Kotesovec, Feb 24 2016

A321963 Stieltjes generated from the sequence m, m+1, m+2, m+3, .... where m = 4.

Original entry on oeis.org

1, 4, 36, 444, 6636, 114084, 2194596, 46460124, 1070653356, 26650132164, 712373143716, 20355134459004, 619356569885676, 20002325474150244, 683641504802995236, 24662695086736585884, 936845038595867508396, 37388655553571504769924, 1564425694139017014501156
Offset: 0

Views

Author

Peter Luschny, Dec 26 2018

Keywords

Comments

See A321964 for the definitions.

Crossrefs

A000007 (m=0), A001147 (m=1), A000698 (m=2), A167872 (m=3), this sequence (m=4).
a(n) = A127059(n)/3.

Programs

  • Maple
    A321963List := proc(len) local S, k, m, cf, ser;
        S := [seq(k+4, k = 0..len)]: m := 1;
        for k from len by -1 to 1 do
            m := 1 - S[k]*x/m od;
        cf := 1/m:
        ser := series(cf, x, len);
        seq(coeff(ser, x, n), n = 0..len-1) end:
    A321963List(19);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k == n, n + 1, Sum[T[j + k, k] T[n - j, k + 1], {j, 0, n - k - 1}]]; a[n_] := T[n + 2, 2]/3; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Jul 22 2019, from A127059 *)

Formula

a(n) ~ 2^(n + 5/2) * n^(n+3) / (3*exp(n)). - Vaclav Kotesovec, Jan 02 2019

A226270 Number of primitive permutations with n buds and 3 red or blue elements.

Original entry on oeis.org

1, 7, 69, 843, 12081, 197127
Offset: 0

Views

Author

N. J. A. Sloane, Jun 05 2013

Keywords

Crossrefs

Formula

Conjectural recurrence: a(n) = (1/3)*(n+1)*d(n+2) - Sum_{k = 0..n-1} d(n+1-k)*a(k) with a(0)= 1, where d(n) = (2*n-1)!! = A001147(n). If true then the sequence continues [1, 7, 69, 843, 12081, 197127, 3595509, 72393003, 1594224801, 38123341767, 984142175589, ...]. - Peter Bala, Dec 26 2019
From Peter Bala, Jul 07 2022: (Start)
Let A(x) = 1 + 7*x + 69*x^2 + 843*x^3 + 12081*x^4 + 197127*x^5 + ... denote the o.g.f. Then it appears that 1 + 2*x*A(x) = 1/(1 - 2*x/(1 - 5*x/(1 - 4*x/(1 - 7*x/(1 - 6*x/(1 - 9*x/(1 - 8*x/(1 - ...)))))))), a continued fraction of Stieltjes type, and also that 1 + 2*x*A(x) = 1/(1 + 3*x - 5*x/(1 + 5*x - 7*x/ (1 + 7*x - 9*x/ (1 + 9*x - 11*x/ (1 + 11*x - ...))))).
If true, then 1 + x/(1 - 2*x - 6*x^2*A(x)) = 1 + x + 2*x^2 + 10*x^3 + 74*x^4 + 706*x^5 + ... is the g.f. of A000698. (End)
Previous Showing 11-14 of 14 results.