cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A111537 Column 1 of triangle A111536.

Original entry on oeis.org

1, 2, 8, 44, 296, 2312, 20384, 199376, 2138336, 24936416, 314142848, 4252773824, 61594847360, 950757812864, 15586971531776, 270569513970944, 4959071121374720, 95721139472072192, 1941212789888952320, 41271304403571227648, 918030912312297752576, 21325054720042613565440
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2005

Keywords

Comments

Row sums of triangle in A200659. - Philippe Deléham, Nov 21 2011

References

  • A. N. Khovanskii. The Application of Continued Fractions and Their Generalizations to Problem in Approximation Theory. Groningen: Noordhoff, Netherlands, 1963. See p.141 (10.19).
  • H. P. Robinson, Letter to N. J. A. Sloane, Nov 19 1973.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          n*(n+1)! -add((n-k+1)!*a(k), k=1..n-1))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, May 06 2013
  • Mathematica
    a[n_] := a[n] = If[n==0, 1, n*(n+1)! - Sum[(n-k+1)!*a[k], {k, 1, n-1}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 13 2017, after Alois P. Heinz *)
  • PARI
    {a(n)=if(n<0,0,(matrix(n+2,n+2,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+1)!/1!*x^i)),m-j-1))))^-1)[n+2,2])}

Formula

a(n) = A111536(n+1, 1) = 2*A111536(n, 0) = 2*A111529(n) for n >= 1.
G.f.: log(Sum_{n>=0} (n+1)!*x^n) = Sum_{n>=1} a(n)*x^n/n.
a(n+1) = (n+3)! - 2*(n+2)! - Sum_{k=0..n-1} (n-k+1)!*a(k+1).
a(n+1) is the moment of order n for the measure of density x*exp(-x)/((x*exp(-x)*Ei(x)-1)^2+(Pi*x*exp(-x))^2) on the interval 0..infinity.
G.f.: 1/(1-2*x/(1-2*x/(1-3*x/(1-3*x/(1-4*x/(1-4*x/(1-5*x/(1-...(continued fraction). - Philippe Deléham, Nov 21 2011
G.f. (1-U(0))/x; where U(k) = 1-x*(k+1)/(1-x*(k+2)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jun 29 2012
G.f. -1 + 1/x + U(0)/x where U(k) = 2*x - 1 + 2*x*k - x^2*(k+1)*(k+2)/U(k+1), U(0)=x - W(1,1;-x)/W(1,2;-x), W(a,b,x)= 1 - a*b*x/1! + a*(a+1)*b*(b+1)*x^2/2! - ... + a*(a+1)*...*(a+n-1)*b*(b+1)*...*(b+n-1)*x^n/n! + ...; see [A. N. Khovanskii, p. 141 (10.19)]; (continued fraction, 1-step). - Sergei N. Gladkovskii, Aug 15 2012
G.f.: 1/Q(0), where Q(k) = 1 + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: 1/x - 1/( x*G(0)), where G(k) = 1 - x*(k+1)/(x - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 03 2013
a(0) = 1; a(n) = n * a(n-1) + Sum_{k=0..n-1} a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 05 2020

A111546 Column 2 of triangle A111544.

Original entry on oeis.org

1, 3, 15, 99, 783, 7083, 71415, 789939, 9485343, 122721723, 1701224775, 25156450179, 395362560303, 6583219735563, 115817825451735, 2147443419579219, 41868118883289663, 856527397513863003, 18350158259899381095, 410942059850878349859, 9603217302778609785423
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2005

Keywords

Comments

Also forms the columns of triangle A111548, which is the matrix inverse of triangle A111544.

Crossrefs

Programs

  • Haskell
    a111546 n = a111546_list !! n
    a111546_list = 1 : f 2 [1] where
       f v ws@(w:_) = y : f (v + 1) (y : ws) where
                      y = v * w + (sum $ zipWith (*) ws $ reverse ws)
    -- Reinhard Zumkeller, Jan 24 2014
  • PARI
    {a(n)=if(n<0,0,(matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+2)!/2!*x^i)),m-j-1))))^-1)[n+3,3])}
    
  • PARI
    a(n)=(1/2)*((n+3)!-3*(n+2)!-sum(k=0,n-2,(n+1-k)!*a(k+1))) \\ Formula by Groux Roland, implemented & checked to conform to given terms by M. F. Hasler, Dec 12 2010
    

Formula

G.f.: log(Sum_{n>=0} (n+2)!/2!*x^n) = Sum_{n>=1} a(n)*x^n/n. a(n) = 3*A111530(n) = -A111548(n+1, 0) for n>0.
a(n+1) = (1/2)*((n+4)!-3*(n+3)!-Sum_{k=0..n-1} (n+2-k)!*a(k+1)).
a(n+1) is the moment of order n for the measure of density: 2*x^2*exp(-x)/((x^2*exp(-x)*Ei(x)-x-1)^2+Pi^2*x^4*exp(-2*x)), on the interval 0..infinity. - Groux Roland, Dec 10 2010
a(n) = Sum_{k=0..n} A200659(n,k)*2^k. - Philippe Deléham, Nov 21 2011
G.f.: 1/(1-3x/(1-2x/(1-4x/(1-3x/(1-5x/(1-4x/(1-...(continued fraction). - Philippe Deléham, Nov 21 2011
G.f. 2 - U(0) where U(k)= 1 - x*(k+1)/(1 - x*(k+3)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jun 29 2012
G.f. -1/G(0) where G(k) = x - 1 - k*x - x*(k+2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: A(x) = 1/(G(0) - x) where G(k) = 1 + (k+1)*x - x*(k+3)/G(k+1) ; (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
G.f.: 1/Q(0), where Q(k)= 1 - x + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: 1/x -2 -2/(x*G(0)), where G(k)= 1 + 1/(1 - x*(k+3)/(x*(k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 1/x - 2 - 1/(x*W(0)), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
G.f.: W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+2)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
a(n) ~ n! * n^3 / 2. - Vaclav Kotesovec, May 24 2025

A111556 Column 3 of triangle A111553.

Original entry on oeis.org

1, 4, 24, 184, 1664, 17024, 192384, 2366144, 31362304, 444907264, 6720628224, 107674883584, 1823884857344, 32575705493504, 612054254936064, 12071987619713024, 249477777420304384, 5392386599983366144
Offset: 0

Views

Author

Paul D. Hanna, Aug 07 2005

Keywords

Comments

Also found in column 0 of triangle A111559, which equals the matrix inverse of A111553.

Crossrefs

Programs

  • PARI
    {a(n)=if(n<0,0,(matrix(n+4,n+4,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+4,4])}

Formula

G.f.: log(Sum_{n>=0} ((n+3)!/3!)*x^n) = Sum_{n>=1} a(n)*x^n/n.
a(n) = 4*A111531(n) for n>0.
From Groux Roland, Dec 10 2010: (Start)
6*a(n+1) = (n+5)! - 4*(n+4)! - Sum_{k=0..n-1} (n-k+3)!*a(k+1).
a(n+1) is the moment of order n for the density 6*x^3*exp(-x)/( (x^3*exp(-x)*Ei(x)-x^2-x-2)^2 + Pi^2*x^6*exp(-2*x) ) over the interval 0..infinity. (End)
a(n) = Sum_{k=0..n} A200659(n,k)*3^k. - Philippe Deléham, Nov 21 2011
G.f.: 1/(1-4x/(1-2x/(1-5x/(1-3x/(1-6x/(1-4x/(1-...(continued fraction). - Philippe Deléham, Nov 21 2011
G.f.: 1/Q(0), where Q(k) = 1 - 2*x + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: 1/x - 3 - 2/(x*G(0)), where G(k) = 1 + 1/(1 - x*(k+4)/(x*(k+4) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: W(0), where W(k) = 1 - x*(k+4)/( x*(k+4) - 1/(1 - x*(k+2)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
Showing 1-3 of 3 results.