A111553
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+4 of T), or [T^p](m,0) = p*T(p+m,p+4) for all m>=1 and p>=-4.
Original entry on oeis.org
1, 1, 1, 6, 2, 1, 46, 10, 3, 1, 416, 72, 16, 4, 1, 4256, 632, 116, 24, 5, 1, 48096, 6352, 1016, 184, 34, 6, 1, 591536, 70912, 10176, 1664, 282, 46, 7, 1, 7840576, 864192, 113216, 17024, 2696, 416, 60, 8, 1, 111226816, 11371072, 1375456, 192384, 28792, 4256, 592, 76, 9, 1
Offset: 0
SHIFT_LEFT(column 0 of T^-4) = -4*(column 0 of T);
SHIFT_LEFT(column 0 of T^-3) = -3*(column 1 of T);
SHIFT_LEFT(column 0 of T^-2) = -2*(column 2 of T);
SHIFT_LEFT(column 0 of T^-1) = -1*(column 3 of T);
SHIFT_LEFT(column 0 of log(T)) = column 4 of T;
SHIFT_LEFT(column 0 of T^1) = 1*(column 5 of T);
where SHIFT_LEFT of column sequence shifts 1 place left.
Triangle T begins:
1;
1,1;
6,2,1;
46,10,3,1;
416,72,16,4,1;
4256,632,116,24,5,1;
48096,6352,1016,184,34,6,1;
591536,70912,10176,1664,282,46,7,1;
7840576,864192,113216,17024,2696,416,60,8,1; ...
After initial term, column 3 is 4 times column 0.
Matrix inverse T^-1 = A111559 starts:
1;
-1,1;
-4,-2,1;
-24,-4,-3,1;
-184,-24,-4,-4,1;
-1664,-184,-24,-4,-5,1;
-17024,-1664,-184,-24,-4,-6,1; ...
where columns are all equal after initial terms;
compare columns of T^-1 to column 3 of T.
Matrix logarithm log(T) = A111560 is:
0;
1,0;
5,2,0;
34,7,3,0;
282,44,10,4,0;
2696,354,60,14,5,0;
28792,3328,470,84,19,6,0; ...
compare column 0 of log(T) to column 4 of T.
Cf.
A111531 (column 0),
A111554 (column 1),
A111555 (column 2),
A111556 (column 3),
A111557 (column 4),
A111558 (row sums),
A111559 (matrix inverse),
A111560 (matrix log); related tables:
A111528,
A104980,
A111536,
A111544.
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Aug 09 2018, from PARI *)
-
T(n,k)=if(n
A172455
The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
Original entry on oeis.org
1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1
G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 307.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- NIST Digital Library of Mathematical Functions, Airy Functions.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Eric Weisstein's World of Mathematics, Airy Functions, contains the definitions of Ai(x), Bi(x).
Cf.
A000079 S(1,1,-1),
A000108 S(0,0,1),
A000142 S(1,-1,0),
A000244 S(2,1,-2),
A000351 S(4,1,-4),
A000400 S(5,1,-5),
A000420 S(6,1,-6),
A000698 S(2,-3,1),
A001710 S(1,1,0),
A001715 S(1,2,0),
A001720 S(1,3,0),
A001725 S(1,4,0),
A001730 S(1,5,0),
A003319 S(1,-2,1),
A005411 S(2,-4,1),
A005412 S(2,-2,1),
A006012 S(-1,2,2),
A006318 S(0,1,1),
A047891 S(0,2,1),
A049388 S(1,6,0),
A051604 S(3,1,0),
A051605 S(3,2,0),
A051606 S(3,3,0),
A051607 S(3,4,0),
A051608 S(3,5,0),
A051609 S(3,6,0),
A051617 S(4,1,0),
A051618 S(4,2,0),
A051619 S(4,3,0),
A051620 S(4,4,0),
A051621 S(4,5,0),
A051622 S(4,6,0),
A051687 S(5,1,0),
A051688 S(5,2,0),
A051689 S(5,3,0),
A051690 S(5,4,0),
A051691 S(5,5,0),
A053100 S(6,1,0),
A053101 S(6,2,0),
A053102 S(6,3,0),
A053103 S(6,4,0),
A053104 S(7,1,0),
A053105 S(7,2,0),
A053106 S(7,3,0),
A062980 S(6,-8,1),
A082298 S(0,3,1),
A082301 S(0,4,1),
A082302 S(0,5,1),
A082305 S(0,6,1),
A082366 S(0,7,1),
A082367 S(0,8,1),
A105523 S(0,-2,1),
A107716 S(3,-4,1),
A111529 S(1,-3,2),
A111530 S(1,-4,3),
A111531 S(1,-5,4),
A111532 S(1,-6,5),
A111533 S(1,-7,6),
A111546 S(1,0,1),
A111556 S(1,1,1),
A143749 S(0,10,1),
A146559 S(1,1,-2),
A167872 S(2,-3,2),
A172450 S(2,0,-1),
A172485 S(-1,-2,3),
A177354 S(1,2,1),
A292186 S(4,-6,1),
A292187 S(3, -5, 1).
-
a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
-
S(v1, v2, v3, N=16) = {
my(a = vector(N)); a[1] = 1;
for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
};
S(6,-4,-1)
\\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
\\ Gheorghe Coserea, May 12 2017
A200659
Triangle T(n,k), read by rows, given by (1,2,2,3,3,4,4,5,5,6,6,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,1,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 13, 21, 9, 1, 71, 132, 76, 16, 1, 461, 955, 670, 200, 25, 1, 3447, 7782, 6309, 2374, 435, 36, 1, 29093, 70441, 63833, 28413, 6713, 833, 49, 1, 273343, 701352, 694500, 351512, 99868, 16240, 1456, 64, 1
Offset: 0
Triangle begins :
1
1, 1
3, 4, 1
13, 21, 9, 1
71, 132, 76, 16, 1
461, 955, 670, 200, 25, 1
3447, 7782, 6309, 2374, 435, 36, 1
29093, 70441, 63833, 28413, 6713, 833, 49, 1
273343, 701352, 694500, 351512, 99868, 16240, 1456, 64, 1
A111559
Matrix inverse of triangle A111553.
Original entry on oeis.org
1, -1, 1, -4, -2, 1, -24, -4, -3, 1, -184, -24, -4, -4, 1, -1664, -184, -24, -4, -5, 1, -17024, -1664, -184, -24, -4, -6, 1, -192384, -17024, -1664, -184, -24, -4, -7, 1, -2366144, -192384, -17024, -1664, -184, -24, -4, -8, 1, -31362304, -2366144, -192384, -17024, -1664, -184, -24, -4, -9, 1
Offset: 0
Triangle begins:
1;
-1,1;
-4,-2,1;
-24,-4,-3,1;
-184,-24,-4,-4,1;
-1664,-184,-24,-4,-5,1;
-17024,-1664,-184,-24,-4,-6,1;
-192384,-17024,-1664,-184,-24,-4,-7,1; ...
A177354
a(n) is the moment of order n for the density measure 24*x^4*exp(-x)/( (x^4*exp(-x)*Ei(x) - x^3 - x^2 - 2*x - 6)^2 + Pi^2*x^8*exp(-2*x) ) over the interval 0..infinity.
Original entry on oeis.org
5, 35, 305, 3095, 35225, 439775, 5939225, 85961375, 1324702025, 21632195375, 372965377625, 6769644905375, 129049505347625, 2578419996023375, 53898389265685625, 1176832196718869375, 26798832693476455625, 635575680349115699375, 15677971277701873945625, 401729457433222058609375
Offset: 0
- R. Groux, Polynômes orthogonaux et transformations intégrales, Cépadués, 2008, 125-129.
-
a(n)=if(n==0, 5, (1/24)*( (n+6)! -5*(n+5)! -sum(i=0,n-1, (n+4-i)!*a(i) ) ) ); \\ Joerg Arndt, May 04 2013
Showing 1-5 of 5 results.
Comments