Original entry on oeis.org
1, 4, 24, 184, 1664, 17024, 192384, 2366144, 31362304, 444907264, 6720628224, 107674883584, 1823884857344, 32575705493504, 612054254936064, 12071987619713024, 249477777420304384, 5392386599983366144
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+4,n+4,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+4,4])}
A111560
Matrix logarithm of triangle A111553.
Original entry on oeis.org
0, 1, 0, 5, 2, 0, 34, 7, 3, 0, 282, 44, 10, 4, 0, 2696, 354, 60, 14, 5, 0, 28792, 3328, 470, 84, 19, 6, 0, 337072, 35144, 4344, 654, 118, 25, 7, 0, 4273632, 407984, 45320, 6008, 936, 164, 32, 8, 0, 58195072, 5137824, 521200, 62344, 8704, 1352, 224, 40, 9, 0
Offset: 0
Triangle begins:
0;
1,0;
5,2,0;
34,7,3,0;
282,44,10,4,0;
2696,354,60,14,5,0;
28792,3328,470,84,19,6,0;
337072,35144,4344,654,118,25,7,0;
4273632,407984,45320,6008,936,164,32,8,0; ...
-
{T(n,k)=local(M=matrix(n+2,n+2,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))); sum(i=1,#M,(M^0-M)^i/i)[n+1,k+1]}
Original entry on oeis.org
1, 2, 10, 72, 632, 6352, 70912, 864192, 11371072, 160333952, 2409420032, 38428442112, 648333665792, 11538313372672, 216092576714752, 4249731095212032, 87591291183296512, 1888669450881032192
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+2,n+2,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+2,2])}
A111557
Column 4 of triangle A111553; also found in column 0 of triangle A111560, which equals the matrix logarithm of A111553.
Original entry on oeis.org
1, 5, 34, 282, 2696, 28792, 337072, 4273632, 58195072, 846038912, 13072140032, 213897731712, 3695682017792, 67254929193472, 1286282280266752, 25802708552696832, 541894309127053312, 11894387852938452992
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+5,n+5,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+5,5])}
A111559
Matrix inverse of triangle A111553.
Original entry on oeis.org
1, -1, 1, -4, -2, 1, -24, -4, -3, 1, -184, -24, -4, -4, 1, -1664, -184, -24, -4, -5, 1, -17024, -1664, -184, -24, -4, -6, 1, -192384, -17024, -1664, -184, -24, -4, -7, 1, -2366144, -192384, -17024, -1664, -184, -24, -4, -8, 1, -31362304, -2366144, -192384, -17024, -1664, -184, -24, -4, -9, 1
Offset: 0
Triangle begins:
1;
-1,1;
-4,-2,1;
-24,-4,-3,1;
-184,-24,-4,-4,1;
-1664,-184,-24,-4,-5,1;
-17024,-1664,-184,-24,-4,-6,1;
-192384,-17024,-1664,-184,-24,-4,-7,1; ...
Original entry on oeis.org
1, 3, 16, 116, 1016, 10176, 113216, 1375456, 18047296, 253815936, 3805221376, 60558070016, 1019617312256, 18111737604096, 338602832961536, 6648048064792576, 136810876329865216, 2945671077411987456
Offset: 0
-
{a(n)=if(n<0,0,(matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+3,3])}
Original entry on oeis.org
1, 2, 9, 60, 509, 5034, 55689, 674624, 8838189, 124199454, 1861297049, 29618273604, 498716980989, 8860512190034, 165694162575369, 3254269731689064, 66994569450549869, 1443024570035017254
Offset: 0
-
{a(n)=if(n<0,0,sum(k=1,n+1,(matrix(n+k,n+k,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))^-1)[n+1,k]))}
A111561
Column 1 of A111560, which is the matrix log of A111553.
Original entry on oeis.org
0, 2, 7, 44, 354, 3328, 35144, 407984, 5137824, 69566144, 1006372864, 15481560064, 252326173824, 4344015683584, 78793242566144, 1502374856981504, 30052439647908864, 629485600310349824, 13783057303819485184
Offset: 0
-
{a(n)=local(M=matrix(n+2,n+2,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))); if(n<0,0,sum(i=1,#M,(M^0-M)^i/i)[n+2,2])}
A111562
Column 2 of A111560, which is the matrix log of A111553.
Original entry on oeis.org
0, 3, 10, 60, 470, 4344, 45320, 521200, 6513280, 87613440, 1260188800, 19286781440, 312884243840, 5363632995840, 96904980170240, 1840977689943040, 36700487712701440, 766296476640215040, 16728728381231472640
Offset: 0
-
{a(n)=local(M=matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+3)!/3!*x^i)),m-j-1))))); if(n<0,0,sum(i=1,#M,(M^0-M)^i/i)[n+3,3])}
A111544
Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+3 of T), or [T^p](m,0) = p*T(p+m,p+3) for all m>=1 and p>=-3.
Original entry on oeis.org
1, 1, 1, 5, 2, 1, 33, 9, 3, 1, 261, 57, 15, 4, 1, 2361, 441, 99, 23, 5, 1, 23805, 3933, 783, 165, 33, 6, 1, 263313, 39249, 7083, 1383, 261, 45, 7, 1, 3161781, 430677, 71415, 13083, 2361, 393, 59, 8, 1, 40907241, 5137641, 789939, 136863, 23805, 3861, 567, 75, 9, 1
Offset: 0
SHIFT_LEFT(column 0 of T^-3) = -3*(column 0 of T);
SHIFT_LEFT(column 0 of T^-2) = -2*(column 1 of T);
SHIFT_LEFT(column 0 of T^-1) = -1*(column 2 of T);
SHIFT_LEFT(column 0 of log(T)) = column 3 of T;
SHIFT_LEFT(column 0 of T^1) = 1*(column 4 of T);
where SHIFT_LEFT of column sequence shifts 1 place left.
Triangle T begins:
1;
1,1;
5,2,1;
33,9,3,1;
261,57,15,4,1;
2361,441,99,23,5,1;
23805,3933,783,165,33,6,1;
263313,39249,7083,1383,261,45,7,1;
3161781,430677,71415,13083,2361,393,59,8,1; ...
After initial term, column 2 is 3 times column 0.
Matrix inverse T^-1 = A111548 starts:
1;
-1,1;
-3,-2,1;
-15,-3,-3,1;
-99,-15,-3,-4,1;
-783,-99,-15,-3,-5,1;
-7083,-783,-99,-15,-3,-6,1; ...
where columns are all equal after initial terms;
compare columns of T^-1 to column 2 of T.
Matrix logarithm log(T) = A111549 is:
0;
1,0;
4,2,0;
23,6,3,0;
165,32,9,4,0;
1383,222,47,13,5,0;
13083,1824,321,70,18,6,0; ...
compare column 0 of log(T) to column 3 of T.
-
T[n_, k_] := T[n, k] = If[nJean-François Alcover, Aug 09 2018, from PARI *)
-
T(n,k)=if(n
Showing 1-10 of 11 results.
Comments