cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A165970 a(n) = sqrt( superfactorial(4n) / factorial(2n) ).

Original entry on oeis.org

1, 12, 14515200, 420505587390873600000, 6848282921689337839624757371207680000000000, 592617982969061328644755583860005865281724398591341934673920000000000000000
Offset: 0

Views

Author

Max Alekseyev, Oct 02 2009

Keywords

Comments

For n>=5, 2^(12*n)*10^(12*(n - 4)) | a(n). - G. C. Greubel, Apr 18 2016

Crossrefs

Cf. A168467.

Programs

  • Mathematica
    Table[Sqrt[Product[k!,{k,0,4*n}]/(2*n)!],{n,0,10}] (* Vaclav Kotesovec, Jul 10 2015 *)
  • PARI
    {a(n) = 2^n*prod(k=1, 2*n, (2*k-1)!)} \\ Seiichi Manyama, Jul 05 2019

Formula

a(n) = sqrt( A000178(4n) / A000142(2n) ) = sqrt(0! * 1! * ... * (2n-1)! * (2n+1)! * (2n+2)! * ... * (4n)!).
a(n) ~ 2^(8*n^2 + 4*n + 1/6) * n^(4*n^2 + n - 1/24) * Pi^n / (A^(1/2) * exp(6*n^2 + n - 1/24)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015
a(n) = 2^n * Product_{k=1..2*n} (2*k-1)!. - Seiichi Manyama, Jul 05 2019
a(n) = A^(3/2) * exp(-1/8) * 2^(4*n^2 + n - 1/24) * BarnesG(2*n + 3/2) * BarnesG(2*n + 1) / Pi^(n + 1/4), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jul 05 2019

A365266 a(n) = Product_{k=1..n} Gamma(6*k).

Original entry on oeis.org

1, 120, 4790016000, 1703748471578689536000000, 44045334006101976766560297729172439040000000000, 389438360216723307909581902233109465138002465491175688781168640000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Gamma[6*k], {k, 1, n}], {n, 0, 10}]
    Table[Product[(6*k-1)!, {k, 1, n}], {n, 0, 10}]

Formula

a(n) = A^(35/6) * exp(-35/72) * Gamma(1/3)^(5/3) * 2^(-125/72 + 3*n^2) * 3^(47/72 + 5*n/2 + 3*n^2) * Pi^(-25/12 - 5*n/2) * BarnesG(1 + n) * BarnesG(7/6 + n) * BarnesG(4/3 + n) * BarnesG(3/2 + n) * BarnesG(5/3 + n) * BarnesG(11/6 + n), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) ~ A^(-1/6) * Gamma(1/3)^(5/3) * 2^(-35/72 + 3*n + 3*n^2) * 3^(47/72 + 5*n/2 + 3*n^2) * exp(1/72 - 5*n/2 - 9*n^2/2) * n^(19/72 + 5*n/2 + 3*n^2) * Pi^(-5/6 + n/2), where A = A074962 is the Glaisher-Kinkelin constant.
Previous Showing 11-12 of 12 results.