cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A174971 Periodic sequence: Repeat 3, -3.

Original entry on oeis.org

3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3, 3, -3
Offset: 0

Views

Author

Klaus Brockhaus, Apr 04 2010

Keywords

Comments

Interleaving of A010701 and -A010701; signed version of A010701.
Essentially first differences of A010674.
Inverse binomial transform of 3 followed by A000004.
Second inverse binomial transform of A010701.
Third inverse binomial transform of A007283.
Fourth inverse binomial transform of A000244 without initial term 1.
Fifth inverse binomial transform of A164346.
Sixth inverse binomial transform of A005053 without initial term 1.
Seventh inverse binomial transform of A169604.
Eighth inverse binomial transform of A169634.
Ninth inverse binomial transform of A103333 without initial term 1.
Tenth inverse binomial transform of A013708.
Eleventh inverse binomial transform of A093138 without initial term 1.

Crossrefs

Cf. A010701 (all 3's sequence), A000004 (all zeros sequence), A007283 (3*2^n), A000244 (powers of 3), A164346 (3*4^n), A005053 (expand (1-2x)/(1-5x)), A169604 (3*6^n), A169634 (3*7^n), A103333 (expand (1-5x)/(1-8x)), A013708 (3^(2n+1)), A093138 (expand (1-7x)/(1-10x)).

Programs

  • Magma
    &cat[ [3, -3]: n in [0..41] ];
    [ 3*(-1)^n: n in [0..83] ];
    
  • Mathematica
    PadRight[{},120,{3,-3}] (* or *) NestList[-1#&,3,120] (* Harvey P. Dale, Dec 30 2023 *)
  • PARI
    a(n)=3*(-1)^n \\ Charles R Greathouse IV, Jun 13 2013

Formula

a(n) = 3*(-1)^n.
a(n) = -a(n-1) for n > 0; a(0) = 3.
a(n) = a(n-2) for n > 1; a(0) = 3, a(1) = -3.
G.f.: 3/(1+x).

A338717 a(n) = sum of 4th powers of entries in row n of Stern's triangle A337277.

Original entry on oeis.org

1, 3, 37, 395, 4277, 46251, 500213, 5409835, 58507765, 632765739, 6843407605, 74011952171, 800444658677, 8656867341099, 93624651434741, 1012557431099947, 10950882439229941, 118434591969329451, 1280878746784164085, 13852797030687146027, 149819009843990278133
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2020

Keywords

Crossrefs

Cf. A337277.
For 2nd and 3rd powers see A052984, A169634.

Programs

  • Mathematica
    LinearRecurrence[{10,9,-2},{1,3,37},30] (* Harvey P. Dale, Apr 07 2022 *)

Formula

G.f.: -(2*x^2+7*x-1)/((x+1)*(2*x^2-11*x+1)). - Alois P. Heinz, Nov 19 2020
Previous Showing 11-12 of 12 results.