cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 51 results. Next

A164835 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479147, 11420227728, 148462945176, 1930018088544, 25090232567400, 326172989788464, 4240248430609464, 55123223921595648, 716601837188495622
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f.: (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A165270 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^9 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230003, 148462988856, 1930018839840, 25090244719176, 326173178765616, 4240251290365272, 55123266338107968, 716602456719076200
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(78*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 -
12*t^2 - 12*t + 1)

A168835 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 20466884065256245549387, A170733(20) = 20466884065256245549478. - Klaus Brockhaus, Apr 02 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[19]]+t^20+1,den=Total[-12 t^Range[19]]+ 78t^20+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Sep 09 2012 *)

Formula

G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A168883 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^21 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 21: a(21) = 266069492848331192143123, A170733(21) = 266069492848331192143214. - Klaus Brockhaus, Apr 05 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Programs

Formula

G.f.: (t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^21 - 12*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A168931 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 22: a(22) = 3458903407028305497861691, A170733(22) = 3458903407028305497861782. - Klaus Brockhaus, Apr 09 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Formula

G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^22 - 12*t^21 - 12*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A168979 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 23: a(23) = 44965744291367971472203075, A170733(23) = 44965744291367971472203166. - Klaus Brockhaus, Apr 19 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Formula

G.f.: (t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^23 - 12*t^22 - 12*t^21 - 12*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A169027 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 584554675787783629138641067, A170733(24) = 584554675787783629138641158. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Formula

G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^24 - 12*t^23 - 12*t^22 - 12*t^21 - 12*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A169075 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 25: a(25) = 7599210785241187178802334963, A170733(25) = 7599210785241187178802335054. - Klaus Brockhaus, Apr 25 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Programs

Formula

G.f.: (t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^25 - 12*t^24 - 12*t^23 - 12*t^22 - 12*t^21 - 12*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A169123 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 98789740208135433324430355611, A170733(26) = 98789740208135433324430355702. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Programs

Formula

G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^26 - 12*t^25 - 12*t^24 - 12*t^23 - 12*t^22 - 12*t^21 - 12*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).

A169171 Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.

Original entry on oeis.org

1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170733, although the two sequences are eventually different.
First disagreement at index 27: a(27) = 1284266622705760633217594624035, A170733(27) = 1284266622705760633217594624126. - Klaus Brockhaus, May 07 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170733 (G.f.: (1+x)/(1-13*x)).

Formula

G.f.: (t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^27 - 12*t^26 - 12*t^25 - 12*t^24 - 12*t^23 - 12*t^22 - 12*t^21 - 12*t^20 - 12*t^19 - 12*t^18 - 12*t^17 - 12*t^16 - 12*t^15 - 12*t^14 - 12*t^13 - 12*t^12 - 12*t^11 - 12*t^10 - 12*t^9 - 12*t^8 - 12*t^7 - 12*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).
Previous Showing 21-30 of 51 results. Next