cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A169316 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 25930106095162066523508254189813655, A170734(30) = 25930106095162066523508254189813760. - Klaus Brockhaus, Jun 22 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170734 (G.f.: (1+x)/(1-14*x)).

Programs

Formula

G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^30 - 13*t^29 - 13*t^28 - 13*t^27 - 13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).

A169412 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 105. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170734 (G.f.: (1+x)/(1-14*x) ).

Formula

G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^32 - 13*t^31 - 13*t^30 - 13*t^29 - 13*t^28 - 13*t^27 - 13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-13*sum(k=1..31, x^k)+91*x^32).

A169460 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(91*t^33 - 13*t^32 - 13*t^31 - 13*t^30 - 13*t^29 - 13*t^28 - 13*t^27
- 13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 -
13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 -
13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5
- 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1)

A169508 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^34 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[33]]+t^34+1,den=Total[-13 t^Range[33]]+ 91t^34+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Aug 16 2012 *)

Formula

G.f. (t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(91*t^34 - 13*t^33 - 13*t^32 - 13*t^31 - 13*t^30 - 13*t^29 -
13*t^28 - 13*t^27 - 13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 -
13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 -
13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 -
13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1)

A169556 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^35 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(91*t^35 - 13*t^34 - 13*t^33 - 13*t^32 - 13*t^31 -
13*t^30 - 13*t^29 - 13*t^28 - 13*t^27 - 13*t^26 - 13*t^25 - 13*t^24 -
13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 -
13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 -
13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 -
13*t + 1)

A170024 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^36 - 13*t^35 - 13*t^34 - 13*t^33 -
13*t^32 - 13*t^31 - 13*t^30 - 13*t^29 - 13*t^28 - 13*t^27 - 13*t^26 -
13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 -
13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 -
13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4
- 13*t^3 - 13*t^2 - 13*t + 1)

A170072 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^37 - 13*t^36 - 13*t^35 -
13*t^34 - 13*t^33 - 13*t^32 - 13*t^31 - 13*t^30 - 13*t^29 - 13*t^28 -
13*t^27 - 13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 -
13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 -
13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 -
13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1)

A170120 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^38 - 13*t^37 -
13*t^36 - 13*t^35 - 13*t^34 - 13*t^33 - 13*t^32 - 13*t^31 - 13*t^30 -
13*t^29 - 13*t^28 - 13*t^27 - 13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 -
13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 -
13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 -
13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1)

A170168 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^39 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(91*t^39 -
13*t^38 - 13*t^37 - 13*t^36 - 13*t^35 - 13*t^34 - 13*t^33 - 13*t^32 -
13*t^31 - 13*t^30 - 13*t^29 - 13*t^28 - 13*t^27 - 13*t^26 - 13*t^25 -
13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 - 13*t^19 - 13*t^18 -
13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 - 13*t^12 - 13*t^11 -
13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5 - 13*t^4 - 13*t^3 -
13*t^2 - 13*t + 1)

A170216 Number of reduced words of length n in Coxeter group on 15 generators S_i with relations (S_i)^2 = (S_i S_j)^40 = I.

Original entry on oeis.org

1, 15, 210, 2940, 41160, 576240, 8067360, 112943040, 1581202560, 22136835840, 309915701760, 4338819824640, 60743477544960, 850408685629440, 11905721598812160, 166680102383370240, 2333521433367183360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170734, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(91*t^40 - 13*t^39 - 13*t^38 - 13*t^37 - 13*t^36 - 13*t^35 - 13*t^34
- 13*t^33 - 13*t^32 - 13*t^31 - 13*t^30 - 13*t^29 - 13*t^28 - 13*t^27 -
13*t^26 - 13*t^25 - 13*t^24 - 13*t^23 - 13*t^22 - 13*t^21 - 13*t^20 -
13*t^19 - 13*t^18 - 13*t^17 - 13*t^16 - 13*t^15 - 13*t^14 - 13*t^13 -
13*t^12 - 13*t^11 - 13*t^10 - 13*t^9 - 13*t^8 - 13*t^7 - 13*t^6 - 13*t^5
- 13*t^4 - 13*t^3 - 13*t^2 - 13*t + 1)
Previous Showing 31-40 of 49 results. Next