cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A169271 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
First disagreement at index 29: a(29) = 510319664583618615979141932589134585, A170737(29) = 510319664583618615979141932589134738. - Klaus Brockhaus, Jun 03 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170737 (G.f.: (1+x)/(1-17*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[28]]+t^29+1,den=Total[-16 t^Range[28]]+ 136t^29+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, May 27 2012 *)

Formula

G.f.: (t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^29 - 16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).

A169319 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^30 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
First disagreement at index 30: a(30) = 8675434297921516471645412854015290393, A170737(30) = 8675434297921516471645412854015290546. - Klaus Brockhaus, Jun 22 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170737 (G.f.: (1+x)/(1-17*x)).

Programs

Formula

G.f.: (t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^30 - 16*t^29 - 16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).

A169367 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
First disagreement at index 31: a(31) = 147482383064665780017972018518259939129, A170737(31) = 147482383064665780017972018518259939282. - Klaus Brockhaus, Jun 17 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170737 (G.f.: (1+x)/(1-17*x)).

Programs

Formula

G.f.: (t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^31 - 16*t^30 - 16*t^29 - 16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).

A169415 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 153. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170737 (G.f.: (1+x)/(1-17*x) ).

Formula

G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^32 - 16*t^31 - 16*t^30 - 16*t^29 - 16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-16*sum(k=1..31, x^k)+136*x^32).

A169511 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^34 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(136*t^34 - 16*t^33 - 16*t^32 - 16*t^31 - 16*t^30 - 16*t^29 -
16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 -
16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 -
16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 -
16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1)

A169559 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^35 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(136*t^35 - 16*t^34 - 16*t^33 - 16*t^32 - 16*t^31 -
16*t^30 - 16*t^29 - 16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 -
16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 -
16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 -
16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 -
16*t + 1)

A170027 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[35]]+t^36+1,den=Total[-16 t^Range[35]]+ 136t^36+ 1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Apr 02 2012 *)

Formula

G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^36 - 16*t^35 - 16*t^34 - 16*t^33 -
16*t^32 - 16*t^31 - 16*t^30 - 16*t^29 - 16*t^28 - 16*t^27 - 16*t^26 -
16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 -
16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 -
16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4
- 16*t^3 - 16*t^2 - 16*t + 1)

A170075 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^37 - 16*t^36 - 16*t^35 -
16*t^34 - 16*t^33 - 16*t^32 - 16*t^31 - 16*t^30 - 16*t^29 - 16*t^28 -
16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 - 16*t^21 -
16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 -
16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 -
16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1)

A170123 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^38 - 16*t^37 -
16*t^36 - 16*t^35 - 16*t^34 - 16*t^33 - 16*t^32 - 16*t^31 - 16*t^30 -
16*t^29 - 16*t^28 - 16*t^27 - 16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 -
16*t^22 - 16*t^21 - 16*t^20 - 16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 -
16*t^15 - 16*t^14 - 16*t^13 - 16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 -
16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1)

A170219 Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^40 = I.

Original entry on oeis.org

1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(136*t^40 - 16*t^39 - 16*t^38 - 16*t^37 - 16*t^36 - 16*t^35 - 16*t^34
- 16*t^33 - 16*t^32 - 16*t^31 - 16*t^30 - 16*t^29 - 16*t^28 - 16*t^27 -
16*t^26 - 16*t^25 - 16*t^24 - 16*t^23 - 16*t^22 - 16*t^21 - 16*t^20 -
16*t^19 - 16*t^18 - 16*t^17 - 16*t^16 - 16*t^15 - 16*t^14 - 16*t^13 -
16*t^12 - 16*t^11 - 16*t^10 - 16*t^9 - 16*t^8 - 16*t^7 - 16*t^6 - 16*t^5
- 16*t^4 - 16*t^3 - 16*t^2 - 16*t + 1)
Previous Showing 31-40 of 49 results. Next