cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A169375 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^31 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
First disagreement at index 31: a(31) = 22551405187698492227355018258094787597655925, A170745(31) = 22551405187698492227355018258094787597656250. - Klaus Brockhaus, Jun 17 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170745 (G.f.: (1+x)/(1-25*x)).

Formula

G.f.: (t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).

A169423 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^32 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
First disagreement is at index 32, the difference is 325. - Klaus Brockhaus, Jun 27 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170745 (G.f.: (1+x)/(1-25*x) ).

Programs

Formula

G.f.: (t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).
G.f.: (1+2*sum(k=1..31, x^k)+x^32)/(1-24*sum(k=1..31, x^k)+300*x^32).

A169471 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^33 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(300*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27
- 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 -
24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 -
24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5
- 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A169519 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^34 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(300*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 -
24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 -
24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 -
24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 -
24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A169567 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^35 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[34]]+t^35+1,den=Total[-24 t^Range[34]]+300t^35+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, May 11 2013 *)

Formula

G.f. (t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(300*t^35 - 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 -
24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 -
24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 -
24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 -
24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 -
24*t + 1)

A170035 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^36 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^36 - 24*t^35 - 24*t^34 - 24*t^33 -
24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 -
24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 -
24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 -
24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4
- 24*t^3 - 24*t^2 - 24*t + 1)

A170083 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^37 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^37 - 24*t^36 - 24*t^35 -
24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 -
24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 -
24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 -
24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 -
24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A170131 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^38 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^38 - 24*t^37 -
24*t^36 - 24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 -
24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 -
24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 -
24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 -
24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A170179 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^39 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^39 -
24*t^38 - 24*t^37 - 24*t^36 - 24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 -
24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 -
24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 -
24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 -
24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 -
24*t^2 - 24*t + 1)

A170227 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^40 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[39]]+t^40+1,den=Total[-24 t^Range[39]]+ 300t^40+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, May 04 2012 *)

Formula

G.f. (t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(300*t^40 - 24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 - 24*t^35 - 24*t^34
- 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 -
24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 -
24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 -
24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5
- 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)
Previous Showing 31-40 of 49 results. Next