cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A164666 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699195, 517496264040, 15007391291760, 435214336864440, 12621215461767360, 366015239479512840, 10614441686465394960, 307818801412722798030, 8926745023620530422680
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A164983 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^8 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496288835, 15007392363600, 435214378179000, 12621216956594400, 366015291433936200, 10614443442672409200, 307818859579059389400, 8926746920297948448000
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^8 -
28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1)

A168851 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 20: a(20) = 183097837397699744687365489635, A170749(20) = 183097837397699744687365490070. - Klaus Brockhaus, Apr 02 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Programs

Formula

G.f.: (t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A168899 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^21 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 21: a(21) = 5309837284533292595933599211595, A170749(21) = 5309837284533292595933599212030. - Klaus Brockhaus, Apr 05 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Formula

G.f.: (t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A168947 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 22: a(22) = 153985281251465485282074377148435, A170749(22) = 153985281251465485282074377148870. - Klaus Brockhaus, Apr 10 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Programs

Formula

G.f.: (t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^22 - 28*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A168995 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 23: a(23) = 4465573156292499073180156937316795, A170749(23) = 4465573156292499073180156937317230. - Klaus Brockhaus, Apr 19 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[22]]+t^23+1,den=Total[-28 t^Range[22]]+ 406t^23+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Oct 05 2011 *)

Formula

G.f.: (t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^23 - 28*t^22 - 28*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A169043 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 24: a(24) = 129501621532482473122224551182199235, A170749(24) = 129501621532482473122224551182199670. - Klaus Brockhaus, Apr 20 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Formula

G.f.: (t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^24 - 28*t^23 - 28*t^22 - 28*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A169139 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 26: a(26) = 108910863708817759895790847544229922035, A170749(26) = 108910863708817759895790847544229922470. - Klaus Brockhaus, Apr 30 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Programs

Formula

G.f.: (t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^26 - 28*t^25 - 28*t^24 - 28*t^23 - 28*t^22 - 28*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A169187 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 27: a(27) = 3158415047555715036977934578782667751195, A170749(27) = 3158415047555715036977934578782667751630. - Klaus Brockhaus, May 07 2011
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Programs

  • Mathematica
    With[{num=Total[2t^Range[26]]+t^27+1,den=Total[-28 t^Range[26]]+ 406t^27+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Oct 21 2011 *)

Formula

G.f.: (t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^27 - 28*t^26 - 28*t^25 - 28*t^24 - 28*t^23 - 28*t^22 - 28*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).

A169235 Number of reduced words of length n in Coxeter group on 30 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.

Original entry on oeis.org

1, 30, 870, 25230, 731670, 21218430, 615334470, 17844699630, 517496289270, 15007392388830, 435214379276070, 12621216999006030, 366015292971174870, 10614443496164071230, 307818861388758065670, 8926746980273983904430
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170749, although the two sequences are eventually different.
First disagreement at index 28: a(28) = 91594036379115736072360102784697364796835, A170749(28) = 91594036379115736072360102784697364797270. - Klaus Brockhaus, May 24 2011
Computed with Magma using commands similar to those used to compute A154638.

Crossrefs

Cf. A170749 (G.f.: (1+x)/(1-29*x)).

Programs

Formula

G.f.: (t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(406*t^28 - 28*t^27 - 28*t^26 - 28*t^25 - 28*t^24 - 28*t^23 - 28*t^22 - 28*t^21 - 28*t^20 - 28*t^19 - 28*t^18 - 28*t^17 - 28*t^16 - 28*t^15 - 28*t^14 - 28*t^13 - 28*t^12 - 28*t^11 - 28*t^10 - 28*t^9 - 28*t^8 - 28*t^7 - 28*t^6 - 28*t^5 - 28*t^4 - 28*t^3 - 28*t^2 - 28*t + 1).
Previous Showing 21-30 of 50 results. Next