A168865
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^20 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
-
With[{num=Total[2t^Range[19]]+t^20+1,den=Total[-42 t^Range[19]]+903t^20+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jul 17 2014 *)
A168913
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^21 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
A168961
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^22 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
A169009
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^23 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
A169057
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^24 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
A169105
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^25 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
A169153
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^26 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
-
With[{num=Total[2t^Range[25]]+t^26+1,den=Total[-42 t^Range[25]]+ 903t^26+1}, CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Feb 05 2012 *)
A169201
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^27 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
A169249
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^28 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
A169297
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^29 = I.
Original entry on oeis.org
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
Offset: 0
- Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
Cf.
A170763 (G.f.: (1+x)/(1-43*x)).
Comments