cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A309728 G.f. A(x) satisfies: A(x) = A(x^2) / (1 - 2*x).

Original entry on oeis.org

1, 2, 6, 12, 30, 60, 132, 264, 558, 1116, 2292, 4584, 9300, 18600, 37464, 74928, 150414, 300828, 602772, 1205544, 2413380, 4826760, 9658104, 19316208, 38641716, 77283432, 154585464, 309170928, 618379320, 1236758640, 2473592208, 4947184416, 9894519246, 19789038492, 39578377812
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 34; A[] = 1; Do[A[x] = A[x^2]/(1 - 2 x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 34; CoefficientList[Series[Product[1/(1 - 2 x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
  • PARI
    seq(n)=Vec(1/prod(k=0, logint(n,2), 1 - 2*x^(2^k) + O(x*x^n))) \\ Andrew Howroyd, Aug 14 2019

Formula

G.f.: Product_{k>=0} 1/(1 - 2*x^(2^k)).

A374627 Expansion of Product_{k>=0} 1 / (1 - x^(3^k))^3.

Original entry on oeis.org

1, 3, 6, 13, 24, 39, 64, 99, 144, 212, 303, 417, 578, 786, 1041, 1382, 1809, 2322, 2985, 3798, 4761, 5973, 7434, 9144, 11247, 13743, 16632, 20126, 24225, 28929, 34541, 41061, 48489, 57242, 67320, 78723, 92029, 107238, 124350, 144151, 166641, 191820, 220729, 253368, 289737, 331218, 377811
Offset: 0

Views

Author

Seiichi Manyama, Jul 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=0, logint(N, 3), 1-x^3^k)^3)

Formula

G.f. A(x) satisfies A(x) = A(x^3)/(1 - x)^3.
Previous Showing 11-12 of 12 results.