cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A266584 Smallest m such that prime(m) starts a (nonsingular) symmetric n-tuplet of consecutive primes of the smallest span (=A266511(n)).

Original entry on oeis.org

1, 2, 15, 3, 2136, 4, 788244, 7, 73780392, 6, 57067140928, 1361665032086, 19953429852608, 290660101635794, 74896929428416952, 24660071077535201, 5620182896687887031
Offset: 1

Views

Author

Max Alekseyev, Jan 01 2016

Keywords

Comments

See A266583 for further comments and the relation to A266585.
A000040(a(n)+n-1) - A000040(a(n)) = A266511(n).

Crossrefs

Formula

a(n) = A000720(A266512(n)).

Extensions

More terms from Max Alekseyev, Jul 24 2019

A333977 Prime starting a sequence of 20 consecutive primes with symmetrical gaps about the center.

Original entry on oeis.org

1797595814863, 2375065608481, 4465545586753, 21818228348093, 67696772430071, 82116093014611, 155947272322087, 161980267642951, 169560139541641, 202619277419161, 285719200081877, 299828814652799, 314942862282899, 365706921997577
Offset: 1

Views

Author

Tomáš Brada, Sep 20 2020

Keywords

Crossrefs

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+9) >= 9. - Peter Munn, Jan 09 2023

A263171 Smallest prime starting a sequence of 4 consecutive odd primes such that the center of the symmetrical gaps is 2n.

Original entry on oeis.org

7, 5, 251, 353, 137, 2393, 109, 1931, 1753, 883, 3733, 7351, 12007, 2969, 8887, 27697, 1321, 22811, 38377, 62987, 183823, 15679, 124001, 180563, 45887, 48677, 100847, 178693, 152993, 557087, 34057, 367949, 294551, 134507, 173357, 1802407, 531359, 1134311, 933067
Offset: 1

Views

Author

Michel Lagneau, Oct 11 2015

Keywords

Comments

The sequence is generalizable with primes starting a sequence of 2k consecutive odd primes.
Conjecture: a(n) exists for all n>0.

Examples

			a(2)=5 because the 4 consecutive primes 5, 7, 11, 13 have gaps 2, 4, 2, which is symmetric about its center 4 = 2*2.
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=500000:l:=2:T:=array(1..2*l-1)):
    for n from 1 to 35 do:ii:=0:
      for k from 1 to nn while(ii=0) do:
          lst:={}:lst1:={}:
           for m from 1 to 2*l do:
            lst:=lst union {ithprime(k+m-1)}
           od:
             for p from 1 to 2*l do:
              lst1:=lst1 union {lst[p]+lst[2*l-p+1]}
             od:
                n0:=nops(lst1):
                if n0=1
                then
               for a from 1 to 2*l-1 do:
               T[a]:=lst[a+1]-lst[a]:
               od:
               if T[2]=2*n then ii:=1:printf(`%d, `,lst[1]):
               else fi :fi:
               od :
              od:
  • PARI
    a(n) = {pa = 3; pb = 5; pc = 7; forprime(p=8, , if (((pc-pb) == 2*n) && ((pb-pa) == (p-pc)), return(pa)); pa = pb; pb = pc; pc = p;);} \\ Michel Marcus, Oct 16 2015
Previous Showing 11-13 of 13 results.