cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A175656 Eight bishops and one elephant on a 3 X 3 chessboard. G.f.: (1-3*x^2)/(1-3*x+4*x^3).

Original entry on oeis.org

1, 3, 6, 14, 30, 66, 142, 306, 654, 1394, 2958, 6258, 13198, 27762, 58254, 121970, 254862, 531570, 1106830, 2301042, 4776846, 9903218, 20505486, 42409074, 87614350, 180821106, 372827022, 768023666, 1580786574, 3251051634
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 24 A[5] vectors with decimal values 7, 13, 37, 67, 70, 73, 76, 97, 100, 133, 193, 196, 259, 262, 265, 268, 289, 292, 322, 328, 352, 385, 388 and 448. These vectors lead for the side squares to A000079 and for the corner squares to A172481.

Crossrefs

Cf. A175655 (central square).

Programs

  • Magma
    [((3*n+22)*2^n-4*(-1)^n)/18: n in [0..40]]; // Vincenzo Librandi, Aug 04 2011
    
  • Maple
    with(LinearAlgebra): nmax:=29; m:=5; A[5]:= [0,0,0,0,0,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 - 3 x^2)/(1 - 3 x + 4 x^3), {x, 0, 29}], x] (* Michael De Vlieger, Nov 02 2018 *)
    LinearRecurrence[{3,0,-4},{1,3,6},30] (* Harvey P. Dale, Aug 12 2020 *)
  • PARI
    vector(40, n, n--; ((3*n+22)*2^n - 4*(-1)^n)/18) \\ G. C. Greubel, Nov 03 2018

Formula

G.f.: (1-3*x^2)/(1 - 3*x + 4*x^3).
a(n) = 3*a(n-1) - 4*a(n-3) with a(0)=1, a(1)=3 and a(2)=6.
a(n) = ((3*n+22)*2^n - 4*(-1)^n)/18.

A175657 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 3*2^n - 2*F(n+1), with F(n) = A000045(n).

Original entry on oeis.org

1, 4, 8, 18, 38, 80, 166, 342, 700, 1426, 2894, 5856, 11822, 23822, 47932, 96330, 193414, 388048, 778070, 1559334, 3123836, 6256034, 12525598, 25073088, 50181598, 100420510, 200933756, 402017562, 804277910, 1608948656, 3218532934
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 16 A[5] vectors with decimal values 43, 46, 106, 139, 142, 163, 166, 169, 172, 202, 226, 232, 298, 394, 418 and 424. These vectors lead for the side squares to A000079 and for the corner squares to A074878 (a(n)=3*2^n-2*F(n+2)).

Crossrefs

Cf. A000045, A000079, A074878, A175654, A175655 (central square).

Programs

  • Magma
    I:=[1,4,8]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
  • Maple
    with(LinearAlgebra): nmax:=30; m:=5; A[5]:= [0,0,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{3,-1,-2},{1,4,8},40] (* Harvey P. Dale, Aug 12 2012 *)
    CoefficientList[Series[(1 + x - 3 x^2) / (1 - 3 x + x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)

Formula

G.f.: (1+x-3*x^2)/(1-3*x+x^2+2*x^3).
a(n) = 3*a(n-1)-a(n-2)-2*a(n-3) with a(0)=1, a(1)=4 and a(2)=8.

A175658 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 2*Pell(n+1)+2*Pell(n)-2^n, with Pell = A000129.

Original entry on oeis.org

1, 4, 10, 26, 66, 166, 414, 1026, 2530, 6214, 15214, 37154, 90546, 220294, 535230, 1298946, 3149506, 7630726, 18476494, 44714786, 108168210, 261575494, 632367774, 1528408194, 3693378466, 8923553734, 21557263150, 52071634466
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 24 A[5] vectors with decimal values 23, 29, 53, 83, 86, 89, 92, 113, 116, 149, 209, 212, 275, 278, 281, 284, 305, 308, 338, 344, 368, 401, 404 and 464. These vectors lead for the side squares to A000079 and for the corner squares to 2*A094723 (a(n)=2*Pell(n+1)-2^n).
From Clark Kimberling, Aug 23 2017 (Start)
p-INVERT of (1,1,1,....), where p(S) = 1-S-2*S^2+2*S^3.
Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A291000 for a guide to related sequences. (End)

Crossrefs

Cf. A175654, A175655 (central square).
Cf. A000129 (Pell(n)), A078057 (Pell(n)+Pell(n+1)), A094723 (Pell(n+2)-2^n).

Programs

  • Magma
    I:=[1,4,10]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jul 21 2013
    
  • Maple
    nmax:=27; m:=5; A[5]:= [0,0,0,0,1,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{4,-3,-2},{1,4,10},30] (* Harvey P. Dale, Jun 18 2013 *)
    CoefficientList[Series[(1 - 3 x^2) / (1 - 4 x + 3 x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
  • PARI
    Vec((1 - 3*x^2) / ((1 - 2*x)*(1 - 2*x - x^2)) + O(x^30)) \\ Colin Barker, Aug 29 2017

Formula

G.f.: ( 1-3*x^2 ) / ( (2*x-1)*(x^2+2*x-1) ).
a(n) = 4*a(n-1)-3*a(n-2)-2*a(n-3) with a(0)=1, a(1)=4 and a(2)=10.
Limit_{n->oo} a(n+1)/a(n) = 1+sqrt(2).
a(n) = (1-sqrt(2))^(1+n) + (1+sqrt(2))^(1+n) - 2^n. - Colin Barker, Aug 29 2017

A093833 3^n-Jacobsthal(n).

Original entry on oeis.org

1, 2, 8, 24, 76, 232, 708, 2144, 6476, 19512, 58708, 176464, 530076, 1591592, 4777508, 14337984, 43024876, 129096472, 387333108, 1162086704, 3486434876, 10459654152, 31379661508, 94140382624, 282423944076, 847277424632
Offset: 0

Views

Author

Paul Barry, Apr 17 2004

Keywords

Comments

Binomial transform of A052992. Binomial transform is A093834. Partial sums are A004054. Sums of consecutive pairs yield A053581.
Contribution from Johannes W. Meijer, Aug 15 2010: (Start)
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 343, 349, 373 and 469, lead to this sequence. For the central square these vectors lead to the companion sequence A175659.
(End)

Formula

G.f.: (1-x)^2/((1+x)(1-2x)(1-3x)); a(n)=3^n-2^n/3+(-1)^n/3; a(n)=3^n-A001045(n).

A094723 a(n) = Pell(n+2) - 2^n.

Original entry on oeis.org

1, 3, 8, 21, 54, 137, 344, 857, 2122, 5229, 12836, 31413, 76686, 186833, 454448, 1103921, 2678674, 6494037, 15732284, 38089677, 92173782, 222961529, 539145416, 1303349513, 3150038746, 7611815613, 18390447188, 44426264421, 107310084894
Offset: 0

Views

Author

Paul Barry, May 23 2004

Keywords

Comments

Binomial transform of A052955.
The sequence b(n) = 2*a(n), n >= -1, is an elephant sequence, see A175654. For the corner squares 24 A[5] vectors, with decimal values between 23 and 464, lead to the b(n) sequence. For the central square these vectors lead to the companion sequence A175658. - Johannes W. Meijer, Aug 15 2010

Crossrefs

Cf. A000129.

Programs

  • Magma
    I:=[1, 3, 8]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    LinearRecurrence[{4,-3, -2},{1,3,8},40] (* Vincenzo Librandi, Jun 24 2012 *)

Formula

G.f.: (1 - x - x^2)/((1-2*x)*(1 - 2*x - x^2)).
a(n) = ((1+sqrt(2))^n*(3*sqrt(2)/4+1) - (3*sqrt(2)/4-1)*(1-sqrt(2))^n) - 2^n.
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3). - Vincenzo Librandi, Jun 24 2012

A175659 Eight bishops and one elephant on a 3 X 3 chessboard: a(n)= (3^(n+1)-Jacobsthal(n+1))-(3^n-Jacobsthal(n)), with Jacobsthal=A001045.

Original entry on oeis.org

1, 6, 16, 52, 156, 476, 1436, 4332, 13036, 39196, 117756, 353612, 1061516, 3185916, 9560476, 28686892, 86071596, 258236636, 774753596, 2324348172, 6973219276, 20920007356, 62760721116, 188283561452, 564853480556
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to 4 A[5] vectors with decimal values 343, 349, 373 and 469. These vectors lead for the side squares to A000079 and for the corner squares to A093833 (a(n)=3^n-Jacobsthal(n)).

Crossrefs

Cf. A000079, A001045, A093833, A175654, A175655 (central square).

Programs

  • Magma
    I:=[1, 6, 16]; [n le 3 select I[n] else 4*Self(n-1)-Self(n-2)-6*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
  • Maple
    nmax:=24; m:=5; A[5]:= [1,0,1,0,1,0,1,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 + 2 x - 7 x^2) / (1 - 4 x + x^2 + 6 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)

Formula

G.f.: (1+2*x-7*x^2)/(1-4*x+x^2+6*x^3).
a(n) = 4*a(n-1)-a(n-2)-6*a(n-3) with a(0)=1, a(1)=6 and a(2)=16.
a(n) = (-2*(-1)^n)/3-2^n/3+2*3^n. [Colin Barker, Oct 07 2012]

A175660 Eight bishops and one elephant on a 3 X 3 chessboard. a(n) = 2^(n+2) - 3*F(n+2).

Original entry on oeis.org

1, 2, 7, 17, 40, 89, 193, 410, 859, 1781, 3664, 7493, 15253, 30938, 62575, 126281, 254392, 511745, 1028281, 2064314, 4141171, 8302637, 16638112, 33329357, 66744685, 133628474, 267482023, 535328225, 1071245704, 2143444841
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7, 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to four A[5] vectors with decimal values 171, 174, 234 and 426. These vectors lead for the side squares to A000079 and for the central square to A175661 (a(n) = 2^(n+2) - 3*F(n+1)).

Crossrefs

Cf. A008466 (2^n-F(n+2)), A027934 (2^n-F(n+1)), A027974 (2^(n+3)-F(n+5)-F(n+3)), A074878 (3*2^n-2*F(n+2)), A142585 ((-1)^(n+1)*(2^(n-1)-F(n+1)-F(n-1))), A175661 (2^(n+2)-3*F(n+1)), A179610 (convolution of (-4)^n and F(n+1)).

Programs

  • Maple
    nmax:=29; m:=1; A[5]:= [0,1,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    Table[2^(n+2)-3Fibonacci[n+2],{n,0,30}] (* or *) LinearRecurrence[ {3,-1,-2},{1,2,7},30] (* Harvey P. Dale, Dec 28 2012 *)

Formula

G.f.: (1 - x + 2*x^2)/(1 - 3*x + x^2 + 2*x^3).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) with a(0)=1, a(1)=2 and a(2)=7.
a(n) = 2^(n+2) - 3*F(n+2) with F(n)=A000045(n).

A175661 Eight bishops and one elephant on a 3 X 3 chessboard: a(n) = 2^(n+2)-3*F(n+1), with F(n) = A000045(n).

Original entry on oeis.org

1, 5, 10, 23, 49, 104, 217, 449, 922, 1883, 3829, 7760, 15685, 31637, 63706, 128111, 257353, 516536, 1036033, 2076857, 4161466, 8335475, 16691245, 33415328, 66883789, 133853549, 267846202, 535917479, 1072199137, 2144987528
Offset: 0

Views

Author

Johannes W. Meijer, Aug 06 2010, Aug 10 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a bishop on the eight side and corner squares but on the central square the bishop turns into a raging elephant, see A175654.
The sequence above corresponds to four A[5] vectors with decimal values 171, 174, 234 and 426. These vectors lead for the side squares to A000079 and for the corner squares to A175660 (a(n)=2^(n+2)-3*F(n+2)).

Crossrefs

Cf. A175655 (central square), A000045.
Cf. A027973 (2^(n+2)+F(n)-F(n+4)), A099036 (2^n-F(n)), A167821 (2^(n+1)-2*F(n+2)), A175657 (3*2^n-2*F(n+1)), A175660 (2^(n+2)-3*F(n+2)), A179610 (convolution of (-4)^n and F(n+1)).

Programs

  • Magma
    I:=[1,5,10]; [n le 3 select I[n] else 3*Self(n-1)-Self(n-2)-2*Self(n-3): n in [1..35]]; // Vincenzo Librandi, Jul 21 2013
  • Maple
    nmax:=29; m:=5; A[5]:= [0,1,0,1,0,1,0,1,1]: A:=Matrix([[0,0,0,0,1,0,0,0,1], [0,0,0,1,0,1,0,0,0], [0,0,0,0,1,0,1,0,0], [0,1,0,0,0,0,0,1,0], A[5], [0,1,0,0,0,0,0,1,0], [0,0,1,0,1,0,0,0,0], [0,0,0,1,0,1,0,0,0], [1,0,0,0,1,0,0,0,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    CoefficientList[Series[(1 + 2 x - 4 x^2) / (1 - 3 x + x^2 + 2 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{3,-1,-2},{1,5,10},30] (* Harvey P. Dale, Apr 15 2019 *)

Formula

G.f.: (1 + 2*x - 4*x^2)/(1 - 3*x + x^2 + 2*x^3).
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) with a(0)=1, a(1)=5 and a(2)=10.
Previous Showing 21-28 of 28 results.