cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A096500 Let f(n) = smallest prime > n; a(n) = f(n+1) - f(n).

Original entry on oeis.org

1, 2, 0, 2, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 6, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 6, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 6, 0, 0, 0, 0, 0, 4, 0, 0, 0, 6, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 4, 0, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jul 09 2004

Keywords

Crossrefs

First differences of A151800.
Cf. also A109578.

Programs

Formula

From Antti Karttunen, Jan 03 2019: (Start)
a(n) = A151800(n+1) - A151800(n).
a(n) = A010051(1+n) * A001223(A000720(1+n)).
(End)

A096501 Difference between primes preceding n+1 and n.

Original entry on oeis.org

0, 4, 1, 0, 2, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 4, 0, 2, 0, 0
Offset: 1

Views

Author

Labos Elemer, Jul 09 2004

Keywords

Comments

Values a(1) = 0 and a(2) = 4 are based on convention in Mathematica-language that PreviousPrime(1) = PreviousPrime(2) = -2. - Antti Karttunen, Jan 03 2019

Crossrefs

Programs

Formula

For n > 2, a(n) = A010051(n) * A001223(A000720(n)-1) = A136548(1+n)-A136548(n). - Antti Karttunen, Jan 03 2019
a(n) = A007917(n) - A007917(n-1), for n > 2. - Ridouane Oudra, Oct 05 2024

A301295 Smallest distance from n to a prime power (as defined in A000961).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 1, 0, 1, 0, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Mar 24 2018

Keywords

Crossrefs

There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2).
Identical to A080732 except here a(1)=0.
Cf. also A051699, A175851.

Programs

  • PARI
    A301295(n) = if(1==n,0,my(k=0);while(!isprimepower(n+k) && !isprimepower(n-k), k++); (k)); \\ Antti Karttunen, Sep 25 2018

Extensions

More terms from Antti Karttunen, Sep 25 2018

A305300 Ordinal transform of A305430, the smallest k > n whose binary expansion encodes an irreducible (0,1)-polynomial over Q.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jun 09 2018

Keywords

Crossrefs

Cf. A206074 (gives the positions of other 1's after the initial one).
Cf. also A175851.

Programs

  • Mathematica
    binPol[n_, x_] := With[{bb = IntegerDigits[n, 2]}, bb.x^Range[Length[bb]-1, 0, -1]];
    ip[n_] := If[IrreduciblePolynomialQ[binPol[n, x]], 1, 0];
    A305430[n_] := Module[{k = n + 1}, While[ip[k] == 0, k++]; k];
    b[_] = 0;
    a[n_] := a[n] = With[{t = A305430[n]}, b[t] = b[t]+1];
    Array[a, 105] (* Jean-François Alcover, Dec 20 2021 *)
  • PARI
    A257000(n) = polisirreducible(Pol(binary(n)));
    A305429(n) = if(n<3,1, my(k=n-1); while(k>1 && !A257000(k),k--); (k));
    A305300(n) = if((1==n)||(1==A257000(n)),1,1+(n-A305429(n)));
    
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A305430(n) = { my(k=1+n); while(!A257000(k),k++); (k); };
    v305300 = ordinal_transform(vector(up_to,n,A305430(n)));
    A305300(n) = v305300[n];

Formula

a(1) = 1; for n > 1, if A257000(n) = 1 [when n is in A206074], a(n) = 1, otherwise a(n) = 1 + n - A305429(n).
Previous Showing 11-14 of 14 results.