A235623 Numbers n for which in the prime power factorization of n!, the numbers of exponents 1 and >1 are equal.
0, 1, 4, 7, 8, 9, 13, 19, 20, 21
Offset: 1
Examples
21! = 2^20*3^9*5^4*7^3*11*13*17*19. Here 4 primes with exponent 1 and 4 primes with exponents >1, so 21 is in the sequence.
Links
- Eugene Ehrhart, On prime numbers, Fibonacci Quarterly 26:3 (1988), pp. 271-274.
Crossrefs
Programs
-
Maple
with(numtheory): a := proc(n) factorset(n!); factorset(iquo(n,2)!); `if`(nops(%% minus %) = nops(%), n, NULL) end: seq(a(n), n=0..30); # Peter Luschny, Apr 28 2014
-
PARI
isok(n) = {f = factor(n!); sum(i=1, #f~, f[i,2] == 1) == sum(i=1, #f~, f[i,2] > 1);} \\ Michel Marcus, Apr 20 2014
Comments