cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A349326 a(n) is the number of prime powers (not including 1) that are bi-unitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 3, 2, 1, 3, 1, 5, 2, 2, 2, 2, 1, 2, 2, 4, 1, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 3, 1, 2, 2, 5, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 4, 3, 2, 1, 3, 2, 2, 2, 4, 1, 3, 2, 2, 2, 2, 2, 6, 1, 2, 2, 2, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 15 2021

Keywords

Comments

The total number of prime powers (not including 1) that divide n is A001222(n).
The least number k such that a(k) = m is A122756(m).

Examples

			12 has 4 bi-unitary divisors, 1, 3, 4 and 12. Two of these divisors, 3 and 4 = 2^2 are prime powers. Therefore a(12) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, e - 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(x%2, x, x-1), factor(n)[, 2])); \\ Amiram Eldar, Sep 29 2023

Formula

Additive with a(p^e) = e if e is odd, and e-1 if e is even.
a(n) <= A001222(n), with equality if and only if n is an exponentially odd number (A268335).
a(n) <= A286324(n) - 1, with equality if and only if n is a prime power (including 1, A000961).
a(n) = A001222(n) - A162641(n). - Amiram Eldar, May 18 2023
From Amiram Eldar, Sep 29 2023: (Start)
a(n) = A001222(A350390(n)) (the number of prime factors of the largest exponentially odd number dividing n, counted with multiplicity).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B_2 - C), where B_2 = A083342 and C = A179119. (End)

A375144 Numbers whose prime factorization has exactly two exponents that equal 2 and has no higher exponents.

Original entry on oeis.org

36, 100, 180, 196, 225, 252, 300, 396, 441, 450, 468, 484, 588, 612, 676, 684, 700, 828, 882, 980, 1044, 1089, 1100, 1116, 1156, 1225, 1260, 1300, 1332, 1444, 1452, 1476, 1521, 1548, 1575, 1692, 1700, 1900, 1908, 1980, 2028, 2100, 2116, 2124, 2156, 2178, 2196
Offset: 1

Views

Author

Amiram Eldar, Aug 01 2024

Keywords

Comments

Numbers of the form m * p^2 * q^2, where p < q are primes, and m is a squarefree number such that gcd(m, p*q) = 1.
Numbers whose powerful part (A057521) is a square of a squarefree semiprime (A085986).
The asymptotic density of this sequence is ((Sum_{p prime} 1/(p*(p+1)))^2 - Sum_{p prime} 1/(p*(p+1))^2)/(2*zeta(2)) = 0.022124574473271163980012... .

Examples

			36 = 2^2 * 3^2 is a term since its prime factorization has exactly two exponents and both are equal to 2.
		

Crossrefs

Subsequence: A179643.

Programs

  • Mathematica
    q[n_] := Module[{e = Sort[FactorInteger[n][[;; , 2]], Greater]}, Length[e] > 1 && e[[1;;2]] == {2, 2} && If[Length[e] > 2, e[[3]] == 1, True]]; Select[Range[2200], q]
  • PARI
    is(k) = {my(e = vecsort(factor(k)[,2], , 4)~); #e > 1 && e[1..2] == [2,2] && if(#e > 2, e[3] == 1, 1);}

A382562 Decimal expansion of Sum_{p prime} 1/(p^2*(p + 1)).

Original entry on oeis.org

1, 2, 2, 0, 1, 7, 4, 9, 3, 7, 7, 6, 8, 6, 2, 2, 5, 7, 4, 9, 1, 4, 4, 8, 7, 7, 6, 7, 4, 5, 5, 0, 3, 1, 7, 3, 5, 2, 8, 9, 7, 1, 9, 2, 3, 7, 6, 5, 8, 2, 1, 9, 6, 5, 5, 8, 6, 1, 9, 0, 3, 2, 9, 5, 8, 8, 7, 4, 2, 8, 6, 0, 5, 7, 1, 0, 0, 2, 9, 3, 0, 1, 2, 7, 2, 5, 4, 3, 3, 6, 8, 4, 1, 6, 7, 1, 7, 5, 5, 1, 0
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.1220174937768622574914487767455031735289719237658219655861903295887428605710029...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/(p^2*(p+1))) \\ Amiram Eldar, Apr 01 2025

Formula

Equals A085548 - A179119.
Equals Sum_{k>=3} (-1)^(k+1) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382567 Decimal expansion of Sum_{p prime} 1/(p*(p + 1)^2).

Original entry on oeis.org

0, 8, 5, 7, 5, 2, 6, 2, 2, 1, 0, 7, 6, 0, 9, 9, 3, 4, 0, 6, 3, 1, 4, 6, 2, 1, 6, 7, 3, 9, 3, 9, 3, 7, 9, 3, 0, 0, 6, 8, 8, 5, 7, 6, 7, 2, 9, 5, 3, 0, 8, 6, 5, 7, 1, 9, 6, 5, 3, 2, 4, 5, 0, 2, 7, 8, 6, 0, 4, 0, 2, 1, 7, 2, 8, 6, 5, 3, 6, 9, 7, 9, 9, 6, 2, 2, 2, 1, 8, 2, 2, 4, 9, 3, 3, 9, 5, 5, 8, 6, 7, 7, 9, 5
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.0857526221076099340631462167393937930068857672953086571965324502786040217286...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/(p*(p+1)^2)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals A179119 - A382554.
Equals Sum_{k>=3} (-1)^(k+1) * (k-2) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382584 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*p*(p + 1)).

Original entry on oeis.org

1, 9, 0, 2, 2, 2, 4, 7, 7, 1, 5, 3, 0, 2, 2, 1, 0, 8, 3, 1, 4, 1, 2, 4, 6, 1, 7, 3, 9, 0, 9, 4, 9, 2, 4, 3, 0, 3, 6, 8, 0, 8, 8, 3, 2, 8, 9, 3, 7, 8, 6, 8, 0, 7, 1, 5, 8, 8, 9, 7, 2, 6, 7, 6, 1, 8, 6, 9, 1, 6, 2, 6, 9, 0, 2, 0, 7, 9, 5, 6, 5, 4, 2, 0, 0, 3, 0, 5, 5, 8, 9, 6, 9, 1, 1, 2, 2, 1, 9, 2, 9, 7, 3
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.1902224771530221083141246173909492430368088328937868071588972676186916269020795654200305...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*p*(p+1))) \\ Amiram Eldar, Apr 02 2025

Formula

Equals -3*A136141/4 + A086242/2 + A179119/4.
Equals Sum_{k>=2} (k-1) * (P(2*k) + P(2*k+1)), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025

A284748 Decimal expansion of the sum of reciprocals of composite powers.

Original entry on oeis.org

2, 2, 6, 8, 4, 3, 3, 3, 0, 9, 5, 0, 2, 0, 4, 8, 7, 2, 1, 3, 5, 6, 3, 2, 5, 4, 0, 1, 4, 4, 0, 5, 7, 6, 0, 4, 3, 8, 1, 2, 5, 8, 6, 6, 3, 9, 1, 6, 8, 1, 3, 9, 5, 1, 6, 8, 8, 9, 9, 3, 9, 3, 2, 6, 4, 3, 2, 9, 0, 9, 7, 1, 5, 1, 0, 7, 6, 6, 6, 0, 2, 1, 6, 6, 2, 0, 1, 2, 4, 1, 1, 7, 6, 6, 7, 9, 1, 8, 1, 6, 7, 1, 0, 6, 2, 1
Offset: 0

Views

Author

Terry D. Grant, Apr 01 2017

Keywords

Examples

			Equals 1/(4*3)+1/(6*5)+1/(8*7)+1/(9*8)+1/(10*9)+...
= 0.226843330950204872135632540144057604...
		

Crossrefs

Decimal expansion of the sum of reciprocal powers: A136141 (primes), A154945 (primes at even powers), A152447 (semiprimes), A154932 (squarefree semiprimes).
Decimal expansion of the 'nonprime zeta function': A275647 (at 2), A278419 (at 3).

Programs

  • Mathematica
    RealDigits[ NSum[Zeta[n]-1-PrimeZetaP[n], {n, 2, Infinity}], 10, 105] [[1]]
  • PARI
    1 - sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021

Formula

Equals Sum_{n>=1} 1/A002808(n)^(n+1) = (A275647 - 1) + (A278419 - 1) + ...
Equals Sum_{n>=1} 1/A002808(n)*(A002808(n)-1).
Equals Sum_{n>=2} (Zeta(n) - PrimeZeta(n) - 1) = Sum_{n>=2} CompositeZeta(n).
Equals 1 - A136141.

Extensions

More digits from Vaclav Kotesovec, Jan 13 2021

A382563 Decimal expansion of Sum_{p prime} 1/(p^3*(p + 1)).

Original entry on oeis.org

0, 5, 2, 7, 4, 5, 1, 4, 5, 5, 2, 2, 5, 8, 1, 2, 7, 8, 9, 3, 1, 6, 6, 4, 5, 3, 7, 9, 2, 0, 2, 0, 3, 5, 2, 7, 4, 4, 6, 4, 4, 0, 1, 9, 8, 1, 6, 0, 3, 2, 7, 3, 2, 4, 3, 0, 2, 4, 8, 1, 6, 8, 7, 1, 1, 2, 8, 8, 8, 7, 2, 8, 9, 5, 7, 1, 2, 6, 6, 5, 7, 5, 0, 8, 3, 7, 9, 8, 6, 3, 6, 9, 5, 3, 0, 0, 8, 0, 5, 4, 4, 5, 1
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.0527451455225812789316645379202035274464401981603273243024816...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/(p^3*(p+1))) \\ Amiram Eldar, Apr 01 2025

Formula

Equals -A085548 + A085541 + A179119.
Equals Sum_{k>=4} (-1)^k * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025

A382565 Decimal expansion of Sum_{p prime} 1/((p - 1)^2*(p + 1)).

Original entry on oeis.org

4, 1, 1, 6, 8, 5, 8, 4, 8, 5, 4, 5, 8, 1, 8, 0, 5, 1, 7, 3, 8, 7, 6, 1, 0, 5, 3, 2, 7, 5, 5, 4, 8, 0, 6, 0, 5, 2, 4, 0, 4, 9, 7, 9, 1, 1, 9, 8, 3, 4, 4, 6, 0, 3, 2, 3, 9, 2, 8, 6, 0, 0, 0, 9, 1, 5, 8, 3, 5, 0, 5, 7, 7, 5, 0, 2, 4, 2, 2, 9, 2, 1, 7, 6, 0, 7, 8, 3, 3, 4, 6, 2, 4, 1, 5, 5, 0, 7, 6, 9, 0, 1, 2, 7
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.411685848545818051738761053275548060524049791198344603239286000...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^2*(p+1))) \\ Amiram Eldar, Apr 02 2025

Formula

Equals -A136141/4 + A086242/2 - A179119/4.
Equals Sum_{k>=2} (k-1) * (P(2*k-1) + P(2*k)), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025

A382566 Decimal expansion of Sum_{p prime} 1/((p - 1)^3*(p + 1)).

Original entry on oeis.org

3, 6, 7, 9, 2, 1, 6, 2, 4, 6, 0, 6, 3, 8, 0, 9, 9, 7, 5, 9, 7, 2, 6, 1, 3, 7, 6, 5, 0, 3, 2, 9, 1, 1, 7, 0, 5, 6, 0, 3, 5, 7, 4, 7, 2, 1, 6, 3, 3, 8, 3, 8, 2, 6, 0, 1, 8, 2, 6, 9, 0, 6, 1, 5, 1, 7, 3, 4, 9, 2, 6, 6, 3, 5, 2, 4, 0, 1, 5, 6, 9, 6, 4, 8, 2, 8, 6, 9, 7, 6, 3, 7, 4, 2, 6, 7, 9, 3, 4, 9, 2, 5, 2
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.36792162460638099759726137650329117056035747216338382601826906151734926635240156964828...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/((p-1)^3*(p+1))) \\ Amiram Eldar, Apr 02 2025

Formula

Equals A136141/8 - A086242/4 + A380840/2 + A179119/8.
Equals Sum_{k>=2} (k-1)^2 * P(2*k) + (k-1)*k * P(2*k+1), where P is the prime zeta function. - Amiram Eldar, Apr 02 2025

A382568 Decimal expansion of Sum_{p prime} 1/(p^2*(p + 1)^2).

Original entry on oeis.org

0, 3, 6, 2, 6, 4, 8, 7, 1, 6, 6, 9, 2, 5, 2, 3, 2, 3, 4, 2, 8, 3, 0, 2, 5, 6, 0, 0, 0, 6, 1, 0, 9, 3, 8, 0, 5, 2, 2, 0, 8, 6, 1, 5, 6, 4, 7, 0, 5, 1, 3, 3, 0, 8, 3, 8, 9, 6, 5, 7, 8, 7, 9, 3, 1, 0, 1, 3, 8, 8, 3, 8, 8, 4, 2, 3, 4, 9, 2, 3, 2, 1, 3, 1, 0, 3, 2, 1, 5, 4, 5, 9, 2, 3, 3, 2, 1, 9, 6, 4, 2, 3, 6, 7, 4
Offset: 0

Views

Author

Artur Jasinski, Mar 31 2025

Keywords

Examples

			0.03626487166925232342830256000610938052208615647051330838965787931013...
		

Crossrefs

Programs

  • PARI
    sumeulerrat(1/(p^2*(p+1)^2)) \\ Amiram Eldar, Apr 01 2025

Formula

Equals A085548 - 2*A179119 + A382554.
Equals Sum_{k>=4} (-1)^k * (k-3) * P(k), where P is the prime zeta function. - Amiram Eldar, Apr 01 2025
Previous Showing 21-30 of 58 results. Next