cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A341154 Number of partitions of 2*n into exactly n prime powers (including 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 13, 19, 24, 34, 42, 58, 71, 94, 116, 151, 182, 234, 282, 354, 424, 528, 627, 773, 914, 1113, 1311, 1585, 1854, 2227, 2599, 3095, 3597, 4262, 4931, 5811, 6704, 7855, 9035, 10542, 12080, 14036, 16047, 18561, 21161, 24397, 27736, 31866
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 06 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Product[1/(1 - Boole[PrimePowerQ[k + 1]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Boole[PrimePowerQ[d + 1]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 48}]

Formula

G.f.: Product_{p prime, k>=1} 1 / (1 - x^(p^k-1)).

A281947 Smallest prime p such that p^i - 1 is a totient (A002202) for all i = 1 to n, or 0 if no such p exists.

Original entry on oeis.org

2, 3, 7, 7, 37, 37, 113, 113, 241, 241, 241, 241, 241, 241, 241, 241, 241, 241, 2113, 2113, 2113, 2113, 2113, 2113, 3121, 3121, 3121, 3121
Offset: 1

Views

Author

Altug Alkan, Feb 03 2017

Keywords

Comments

p - 1 = phi(p) is a totient for all primes p.
If A281909(n) is prime, then a(n) = A281909(n).

Examples

			a(3) = 7 because 7^2 - 1 = 48, 7^3 - 1 = 342 are both totient numbers (A002202) and 7 is the least prime number with this property.
		

Crossrefs

Programs

  • PARI
    isok(p, n)=for (i=1, n, if (! istotient(p^i-1), return(0));); 1;
    a(n) = {my(p=2); while (! isok(p, n), p = nextprime(p+1)); p;} \\ Michel Marcus, Feb 04 2017

Extensions

a(19) from Michel Marcus, Feb 04 2017
a(20)-a(28) from Ray Chandler, Feb 08 2017

A335384 Order of the finite groups GL(m,q) [or GL_m(q)] in increasing order as q runs through the prime powers.

Original entry on oeis.org

6, 48, 168, 180, 480, 2016, 3528, 5760, 11232, 13200, 20160, 26208, 61200, 78336, 123120, 181440, 267168, 374400, 511056, 682080, 892800, 1014816, 1488000, 1822176, 2755200, 3337488, 4773696, 5644800, 7738848, 9999360, 11908560, 13615200, 16511040, 19845936, 24261120, 25048800, 28003968
Offset: 1

Views

Author

Bernard Schott, Jun 04 2020

Keywords

Comments

GL(m,q) is the general linear group, the group of invertible m X m matrices over the finite field F_q with q = p^k elements.
By definition, all fields must contain at least two distinct elements, so q >= 2. As GL(1,q) is isomorphic to F_q*, the multiplicative group [whose order is p^k-1 (A181062)] of finite field F_q, data begins with m >= 2.
Some isomorphisms (let "==" denote "isomorphic to"):
a(1) = 6 for GL(2,2) == PSL(2,2) == S_3.
a(2) = 48 for GL(2,3) that has 55 subgroups.
a(3) = 168 for GL(3,2) == PSL(2,7) [A031963].
a(11) = 20160 for GL(4,2) == PSL(4,2) == Alt(8).
Array for order of GL(m,q) begins:
=============================================================
m\q | 2 3 4=2^2 5 7
-------------------------------------------------------------
2 | 6 48 180 480 2016
3 | 168 11232 181440 1488000 33784128
4 | 20160 24261120 2961100800 116064000000 #GL(4,7)
5 |9999360 #GL(5,3) ... ... ...

Examples

			a(1) = #GL(2,2) = (2^2-1)*(2^2-2) = 3*2 = 6 and the 6 elements of GL(2,2) that is isomorphic to S_3 are the 6 following 2 X 2 invertible matrices with entries in F_2:
  (1 0)   (1 1)   (1 0)   (0 1)   (0 1)   (1 1)
  (0 1) , (0 1) , (1 1) , (1 0) , (1 1) , (1 0).
a(2) = #GL(2,3) = (3^2-1)*(3^2-3) = 8*6 = 48.
a(3) = #GL(3,2) = (2^3-1)*(2^3-2)*(2^3-2^2) = 168.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • Daniel Perrin, Cours d'Algèbre, Maths Agreg, Ellipses, 1996, pages 95-115.

Crossrefs

Cf. A059238 [GL(2,q)].
Cf. A002884 [GL(m,2)], A053290 [GL(m,3)], A053291 [GL(m,4)], A053292 [GL(m,5)], A053293 [GL(m,7)], A052496 [GL(m,8)], A052497 [GL(m,9)], A052498 [GL(m,11)].
Cf. A316622 [GL(n,Z_k)].

Formula

#GL(m,q) = Product_{k=0..m-1}(q^m-q^k).
Previous Showing 11-13 of 13 results.