cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A254569 The number of unordered pairs (f,g) of functions from {1..n} to itself such that fg=gf (i.e., f(g(i))=g(f(i)) for all i).

Original entry on oeis.org

1, 7, 84, 1540, 37345, 1145376, 42402871, 1849021504, 93217426857, 5363120671120, 348669188664511, 25418305492373520, 2064813985107357445, 185896884170249831320, 18459391640792004885375, 2012607682674617326564096, 239898601216105901349115537, 31132586664410794285693925664, 4380971763246528510240944123071, 665896706682993760478978112600400
Offset: 1

Views

Author

Joerg Arndt, Feb 01 2015

Keywords

Examples

			The a(2) = 7 pairs of maps [2] -> [2] are:
01:  [ 1 1 ]  [ 1 1 ]
02:  [ 1 1 ]  [ 1 2 ]
03:  [ 1 2 ]  [ 1 2 ]
04:  [ 1 2 ]  [ 2 1 ]
05:  [ 1 2 ]  [ 2 2 ]
06:  [ 2 1 ]  [ 2 1 ]
07:  [ 2 2 ]  [ 2 2 ]
		

Crossrefs

Cf. A181162 (ordered pairs), A254570 (unordered pairs, f and g distinct).

Formula

a(n) = (A181162(n) - n^n)/2 + n^n.

A277337 Number of pairs of functions (f,g) from a set of n elements into itself that are generalized reflexive inverses of each other.

Original entry on oeis.org

1, 1, 6, 87, 2056, 71145, 3355956, 203899087, 15451934016, 1419181414929, 154796303577700, 19713331210664751, 2891162097251141616, 482733064744447450297, 90871916094948544512516, 19125402877558442317308975, 4467829768503489097383022336, 1151133088512781095709101702177, 325279313240363190497696752254276
Offset: 0

Views

Author

David Einstein, Oct 09 2016

Keywords

Comments

The number of pairs of functions (f,g) from a set of n elements into itself such that f(g(f(x))) = f(x) and g(f(g(x))) = g(x).

Examples

			For n=2 the a(2)=6 solutions are
1: [1,1] [1,1]
2: [1,1] [2,2]
3: [2,2] [1,1]
4: [2,2] [2,2]
5: [1,2] [1,2]
6: [2,1] [2,1]
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[n!*Binomial[n, k]*k^(2*(n-k))/(n-k)!, {k, 1, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 21 2016 *)
  • PARI
    a(n) = sum(k = 1, n, n! / (n - k)! * binomial(n, k) * k^(2 * (n - k) ) ); \\ Joerg Arndt, Oct 10 2016

Formula

a(n) = Sum_{k=0..n} ((n! / (n - k)!) * C(n, k) * k^(2 * (n - k))).

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 20 2016

A239762 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(f(g(x))) = g(f(x)).

Original entry on oeis.org

1, 1, 10, 159, 3568, 106545, 4062336, 192754009
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239763 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(f(x)) = f(g(x)).

Original entry on oeis.org

1, 1, 10, 171, 4600, 168285, 7988736, 472245991
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239764 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(f(f(x))) = f(g(x)).

Original entry on oeis.org

1, 1, 10, 183, 5128, 203085, 10709136, 722183371
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239765 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(f(g(x))) = g(g(g(x))).

Original entry on oeis.org

1, 1, 10, 189, 6304, 315065, 21848976, 1992930037
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239766 Number of pairs of functions (f,g) from a set of n elements into itself satisfying f(f(x)) = f(g(g(x))).

Original entry on oeis.org

1, 1, 10, 195, 5992, 260085, 14922576, 1087100371
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Cf. A181162.

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239770 Number of pairs of functions f, g from a size n set into itself satisfying f(g(f(x))) = g(f(f(x))).

Original entry on oeis.org

1, 1, 10, 213, 7720, 420865, 31879296, 3175850965
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) local l; l:= s(n$2);
           add(add(`if`([seq(evalb(f[g[f[i]]]=g[f[f[i]]]),
           i=1..n)]=[true$n], 1, 0), g=l), f=l)
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239774 Number of pairs of functions f, g from a size n set into itself satisfying f(f(g(x))) = f(f(f(x))).

Original entry on oeis.org

1, 1, 10, 285, 14176, 1034145, 105764256, 14367333421
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) local l; l:= s(n$2);
           add(add(`if`([seq(evalb(f[f[g[i]]]=f[f[f[i]]]),
           i=1..n)]=[true$n], 1, 0), g=l), f=l)
        end:
    seq(a(n), n=0..5); # Alois P. Heinz, Jul 16 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014

A239776 Number of pairs of functions f, g from a size n set into itself satisfying f(f(g(x))) = g(g(f(x))).

Original entry on oeis.org

1, 1, 12, 189, 5200, 208945, 11517936, 828676933
Offset: 0

Views

Author

Chad Brewbaker, Mar 26 2014

Keywords

Crossrefs

Programs

  • Maple
    s:= proc(n, i) option remember; `if`(i=0, [[]],
           map(x-> seq([j, x[]], j=1..n), s(n, i-1)))
        end:
    a:= proc(n) (l-> add(add(`if`([true$n]=[seq(evalb(
           f[f[g[i]]]=g[g[f[i]]]), i=1..n)], 1, 0), g=l), f=l))(s(n$2))
        end:
    seq(a(n), n=0..5);  # Alois P. Heinz, Jul 16 2014

Extensions

a(6)-a(7) from Giovanni Resta, Mar 28 2014
Previous Showing 21-30 of 35 results. Next