cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A171386 The characteristic function of 2 and 3: 1 if n is prime such that either n-1 or n+1 is prime, else 0.

Original entry on oeis.org

0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 07 2009

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + a(n) = A052268(n).

Crossrefs

Programs

Formula

a(n) = A130130(n) - A130130(n-1), for n>0.

Extensions

Edited by Charles R Greathouse IV, Mar 23 2010

A280640 Numbers k such that k^3 has an odd number of digits and the middle digit is 0.

Original entry on oeis.org

0, 30, 40, 42, 100, 101, 115, 116, 123, 126, 135, 163, 164, 171, 199, 200, 201, 214, 468, 479, 487, 498, 500, 502, 513, 520, 525, 543, 557, 562, 564, 575, 576, 577, 578, 579, 585, 596, 600, 615, 623, 642, 656, 661, 666, 690, 695, 697, 700, 705, 709, 717, 721
Offset: 1

Views

Author

Lars Blomberg, Jan 07 2017

Keywords

Comments

The sequence of cubes starts: 0, 27000, 64000, 74088, 1000000, 1030301, 1520875, 1560896, ...

Examples

			0^3 = (0), 126^3 = 200(0)376, 562^3 = 1775(0)4328.
		

Crossrefs

See A279420-A279429 for a k^2 version.
See A279430-A279431 for a k^2 version in base 2.

Programs

  • Mathematica
    a[n_]:=Part[IntegerDigits[n], (Length[IntegerDigits[n]] + 1)/2];
    Select[Range[0, 721], OddQ[Length[IntegerDigits[#^3]]] && a[#^3]==0 &] (* Indranil Ghosh, Mar 06 2017 *)
  • PARI
    isok(k) = my(d=digits(k^3)); (#d%2 == 1) && (d[#d\2 +1] == 0);
    for(k=0, 721, if(k==0 || isok(k)==1, print1(k, ", "))); \\ Indranil Ghosh, Mar 06 2017
    
  • Python
    i=0
    j=1
    while i<=721:
        n=str(i**3)
        l=len(n)
        if l%2 and n[(l-1)//2]=="0":
            print(str(i), end=",")
            j+=1
        i+=1 # Indranil Ghosh, Mar 06 2017

A280649 Numbers k such that k^3 has an odd number of digits and the middle digit is 9.

Original entry on oeis.org

28, 33, 41, 108, 132, 157, 159, 175, 178, 181, 184, 187, 190, 193, 196, 204, 207, 209, 466, 474, 480, 486, 492, 508, 514, 515, 518, 519, 528, 536, 539, 552, 570, 588, 611, 627, 638, 648, 651, 657, 658, 659, 660, 706, 707, 708, 714, 719, 745, 757, 763, 765, 772
Offset: 1

Views

Author

Lars Blomberg, Jan 07 2017

Keywords

Comments

The sequence of cubes starts: 21952, 35937, 68921, 1259712, 2299968, 3869893, 4019679, 5359375, ...

Examples

			28^3 = 21(9)52, 181^3 = 592(9)741, 536^3 = 1539(9)0656.
		

Crossrefs

See A279420-A279429 for a k^2 version.
See A279430-A279431 for a k^2 version in base 2.

Programs

  • Mathematica
    ond9Q[n_]:=Module[{idn=IntegerDigits[n^3],len},len=Length[idn];OddQ[len]&&idn[[(len+1)/2]]==9]; Select[Range[800],ond9Q] (* Harvey P. Dale, Mar 14 2018 *)

A181376 Total number of n-digit numbers requiring 2 positive cubes in their representation as a sum of cubes.

Original entry on oeis.org

2, 7, 32, 161, 736, 3416, 15976, 74295, 345334, 1605089, 7455698, 34623338, 160759047, 746318897, 3464508951, 16081935250, 74648713406
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + a(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).

Examples

			a(1) = 2 from 1+1=2, 1+8=9.
a(2) = 7 from 8+8=16, 1+27=28, 35, 54, 65, 72, 91.
		

Crossrefs

Cf. A003325.

Programs

  • Mathematica
    Table[Length[c = Table[j^3, {j, (10^n - 1)^(1/3)}];
      Select[Union[Flatten[Outer[Plus, c, c]]],
    IntervalMemberQ[Interval[{10^(n - 1), 10^n - 1}], #] &]], {n, 10}] (* Robert Price, Apr 18 2019 *)
  • PARI
    a(n)=my(N=10^n, Nn=N/10, v=List(), x3, t); sum(x=sqrtnint(Nn\2,3), sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), t=x3+y^3; t>=Nn && !ispower(t, 3) && listput(v, t))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013

Formula

a(n) = A181375(n)-A181375(n-1).

Extensions

a(6)-a(11) from Charles R Greathouse IV, Oct 16 2013
a(12) from Lars Blomberg, Jan 15 2014
a(13)-a(17) from Hiroaki Yamanouchi, Jul 13 2014

A181378 Total number of n-digit numbers requiring 3 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 14, 107, 1006, 9550, 92743, 913905, 9060358, 90216532
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + a(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181377(n)-A181377(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181380 Total number of n-digit numbers requiring 4 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 17, 224, 3101, 43340, 558806, 6615757, 73663693, 784419159
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + a(n) + A181384(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n).

Crossrefs

Formula

a(n) = A181379(n) - A181379(n-1).

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181384 Total number of n-digit numbers requiring 5 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 20, 272, 3549, 34234, 244503, 1454243, 7201405, 25018440
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + a(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181381(n)-A181381(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181401 Total number of n-digit numbers requiring 6 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 17, 184, 1123, 2115, 479, 3, 0, 0
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + a(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181400(n)-A181400(n-1)

Extensions

a(5)-a(9) from Lars Blomberg, Jan 15 2014

A181403 Total number of n-digit numbers requiring 7 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 9, 63, 48
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + a(n) + A181405(n) + A171386(n) = A052268(n).

Crossrefs

Cf. A018890.

Formula

a(n) = A181402(n) - A181402(n-1).

A181405 Total number of n-digit numbers requiring 8 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

0, 3, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

Arthur Wieferich proved that only 15 integers require eight cubes, cf. A018889.
A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + A181403(n) + a(n) + A171386(n) = A052268(n)

Crossrefs

Formula

a(n) = A181404(n) - A181404(n-1).
Showing 1-10 of 18 results. Next