cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A346185 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n-1,k)^3 * a(k).

Original entry on oeis.org

1, 1, 2, 11, 93, 1294, 26045, 714391, 26109426, 1224739755, 71807248783, 5173027197636, 450173748220033, 46617339568635115, 5677430539873463470, 804907754967314483801, 131598260940217897338131, 24609634809861999705338820, 5226508081059269450476666513
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k]^3 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]

A346186 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n-1,k)^3 * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 2, 12, 132, 2664, 86328, 4257504, 302249232, 29749088160, 3929593244256, 678729769735680, 149951093054923584, 41593439995316826624, 14254785976456164378240, 5952723682598023085466624, 2992204352832467277009072384, 1791038631707465961597691673088
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k]^3 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}]

A346187 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^3 * a(k) * a(n-k-1).

Original entry on oeis.org

1, 1, 9, 279, 20655, 2997405, 753171615, 300907367775, 179603100388215, 152724638158940925, 178223093773584811875, 276909379421415142992975, 558708999223935430219474125, 1433526175506213101913925750425, 4594607165137022427482460137390625, 18114938314838093950739712451059177375
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^3 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]

A177815 Triangle read by rows: binomial(n, m^3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 1, 9, 9, 1, 10, 45, 1, 11, 165, 1, 12, 495, 1, 13, 1287, 1, 14, 3003, 1, 15, 6435, 1, 16, 12870, 1, 17, 24310, 1, 18, 43758, 1, 19, 75582, 1, 20, 125970
Offset: 0

Views

Author

Roger L. Bagula, Dec 13 2010

Keywords

Comments

Row sums are: {1, 2, 3, 4, 5, 6, 7, 8, 10, 19, 56, 177, 508, 1301, 3018, 6451, 12887, 24328, 43777, 75602, 125991,...}.
First length 4 row is: {1, 27, 2220075, 1}.

Examples

			{1},
{1, 1},
{1, 2},
{1, 3},
{1, 4},
{1, 5},
{1, 6},
{1, 7},
{1, 8, 1},
{1, 9, 9},
{1, 10, 45},
{1, 11, 165},
{1, 12, 495},
{1, 13, 1287},
{1, 14, 3003},
{1, 15, 6435},
{1, 16, 12870},
{1, 17, 24310},
{1, 18, 43758},
{1, 19, 75582},
{1, 20, 125970},
...
{1, 27, 2220075, 1}
		

Crossrefs

Programs

  • Mathematica
    t[n_, m_] = Binomial[n, m^3];
    Table[Table[t[n, m], {m, 0, Floor[n^(1/3)]}], {n, 0, 20}];
    Flatten[%]

A200215 G.f. satisfies: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^3 * x^k*A(x)^k) * x^n*A(x)^n/n ).

Original entry on oeis.org

1, 1, 3, 13, 61, 306, 1623, 8937, 50565, 292283, 1718827, 10250916, 61854848, 376949934, 2316738789, 14343701657, 89379109846, 560108223900, 3527723269978, 22318890516413, 141778326349191, 903936594232782, 5782447430948438, 37102633354583532, 238729798670985104
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 61*x^4 + 306*x^5 + 1623*x^6 +...
where the logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A)*x*A + (1 + 2^3*x*A + x^2*A^2)*x^2*A^2/2 +
(1 + 3^3*x*A + 3^3*x^2*A^2 + x^3*A^3)*x^3*A^3/3 +
(1 + 4^3*x*A + 6^3*x^2*A^2 + 4^3*x^3*A^3 + x^4*A^4)*x^4*A^4/4 +
(1 + 5^3*x*A + 10^3*x^2*A^2 + 10^3*x^3*A^3 + 5^3*x^4*A^4 + x^5*A^5)*x^5*A^5/5 +
(1 + 6^3*x*A + 15^3*x^2*A^2 + 20^3*x^3*A^3 + 15^3*x^4*A^4 + 6^3*x^5*A^5 + x^6*A^6)*x^6*A^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 31*x^3/3 + 185*x^4/4 + 1126*x^5/5 + 7043*x^6/6 + 44689*x^7/7 + 286241*x^8/8 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j*A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
Previous Showing 11-15 of 15 results.