A346185
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n-1,k)^3 * a(k).
Original entry on oeis.org
1, 1, 2, 11, 93, 1294, 26045, 714391, 26109426, 1224739755, 71807248783, 5173027197636, 450173748220033, 46617339568635115, 5677430539873463470, 804907754967314483801, 131598260940217897338131, 24609634809861999705338820, 5226508081059269450476666513
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k]^3 a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
A346186
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n-1,k)^3 * a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 2, 12, 132, 2664, 86328, 4257504, 302249232, 29749088160, 3929593244256, 678729769735680, 149951093054923584, 41593439995316826624, 14254785976456164378240, 5952723682598023085466624, 2992204352832467277009072384, 1791038631707465961597691673088
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k]^3 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 17}]
A346187
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n,k)^3 * a(k) * a(n-k-1).
Original entry on oeis.org
1, 1, 9, 279, 20655, 2997405, 753171615, 300907367775, 179603100388215, 152724638158940925, 178223093773584811875, 276909379421415142992975, 558708999223935430219474125, 1433526175506213101913925750425, 4594607165137022427482460137390625, 18114938314838093950739712451059177375
Offset: 0
-
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k]^3 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]
A177815
Triangle read by rows: binomial(n, m^3).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 1, 9, 9, 1, 10, 45, 1, 11, 165, 1, 12, 495, 1, 13, 1287, 1, 14, 3003, 1, 15, 6435, 1, 16, 12870, 1, 17, 24310, 1, 18, 43758, 1, 19, 75582, 1, 20, 125970
Offset: 0
{1},
{1, 1},
{1, 2},
{1, 3},
{1, 4},
{1, 5},
{1, 6},
{1, 7},
{1, 8, 1},
{1, 9, 9},
{1, 10, 45},
{1, 11, 165},
{1, 12, 495},
{1, 13, 1287},
{1, 14, 3003},
{1, 15, 6435},
{1, 16, 12870},
{1, 17, 24310},
{1, 18, 43758},
{1, 19, 75582},
{1, 20, 125970},
...
{1, 27, 2220075, 1}
-
t[n_, m_] = Binomial[n, m^3];
Table[Table[t[n, m], {m, 0, Floor[n^(1/3)]}], {n, 0, 20}];
Flatten[%]
A200215
G.f. satisfies: A(x) = exp( Sum_{n>=1} (Sum_{k=0..n} C(n,k)^3 * x^k*A(x)^k) * x^n*A(x)^n/n ).
Original entry on oeis.org
1, 1, 3, 13, 61, 306, 1623, 8937, 50565, 292283, 1718827, 10250916, 61854848, 376949934, 2316738789, 14343701657, 89379109846, 560108223900, 3527723269978, 22318890516413, 141778326349191, 903936594232782, 5782447430948438, 37102633354583532, 238729798670985104
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 61*x^4 + 306*x^5 + 1623*x^6 +...
where the logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A)*x*A + (1 + 2^3*x*A + x^2*A^2)*x^2*A^2/2 +
(1 + 3^3*x*A + 3^3*x^2*A^2 + x^3*A^3)*x^3*A^3/3 +
(1 + 4^3*x*A + 6^3*x^2*A^2 + 4^3*x^3*A^3 + x^4*A^4)*x^4*A^4/4 +
(1 + 5^3*x*A + 10^3*x^2*A^2 + 10^3*x^3*A^3 + 5^3*x^4*A^4 + x^5*A^5)*x^5*A^5/5 +
(1 + 6^3*x*A + 15^3*x^2*A^2 + 20^3*x^3*A^3 + 15^3*x^4*A^4 + 6^3*x^5*A^5 + x^6*A^6)*x^6*A^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 31*x^3/3 + 185*x^4/4 + 1126*x^5/5 + 7043*x^6/6 + 44689*x^7/7 + 286241*x^8/8 +...
-
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j*A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
Comments