cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A382842 a(n) = Sum_{k=0..floor(n/2)} (binomial(n,k) * binomial(n-k,k))^3.

Original entry on oeis.org

1, 1, 9, 217, 1945, 35001, 764001, 12079089, 250222617, 5424133465, 107360983009, 2358751625649, 52540471866961, 1147794435985393, 26151265459123065, 600227875293254217, 13779170435209475097, 322302377797126709913, 7582484532013652243169, 179184911648568670363185, 4275721755296040840336945
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1 - x)*(1 - y)*(1 - z)*(1 - u)*(1 - v)*(1 - w) - (x*y*z)^2*u*v*w).

Crossrefs

Programs

  • Maple
    a:= n-> add(combinat[multinomial](n, n-2*k, k$2)^3, k=0..n/2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 07 2025
  • Mathematica
    Table[Sum[(Binomial[n, k] Binomial[n - k, k])^3, {k, 0, Floor[n/2]}], {n, 0, 20}]
    Table[HypergeometricPFQ[{1/2 - n/2, 1/2 - n/2, 1/2 - n/2, -n/2, -n/2, -n/2}, {1, 1, 1, 1, 1}, 64], {n, 0, 20}]
    Table[SeriesCoefficient[1/((1 - x) (1 - y) (1 - z) (1 - u) (1 - v) (1 - w) - (x y z)^2 u v w), {x, 0, n}, {y, 0, n}, {z, 0, n}, {u, 0, n}, {v, 0, n}, {w, 0, n}], {n, 0, 20}]

Formula

a(n) ~ 3^(3*n+3) / (8 * Pi^(5/2) * n^(5/2)). - Vaclav Kotesovec, Apr 07 2025
a(n) = Sum_{k=0..floor(n/2)} A089627(n,k)^3. - Alois P. Heinz, Apr 07 2025

A383524 a(n) = Sum_{k=0..floor(n/2)} binomial(n,k) * binomial(n-k,k)^2.

Original entry on oeis.org

1, 1, 3, 13, 43, 171, 711, 2913, 12363, 53203, 230593, 1010703, 4463119, 19827679, 88594299, 397741893, 1793063883, 8113429419, 36832823289, 167701920759, 765577205433, 3503296744233, 16065995216109, 73824301464939, 339844364816559, 1567063753104471, 7237078197034221
Offset: 0

Views

Author

Seiichi Manyama, Apr 29 2025

Keywords

Comments

Diagonal of the rational function 1 / ((1-x)*(1-y)*(1-z) - x*y^2*z^2).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * Binomial[n-k,k]^2,{k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, binomial(n, k)*binomial(n-k, k)^2);
Previous Showing 11-12 of 12 results.