cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A181913 The value of r at the bifurcation point of the first period-7 cycle of the logistic map f(x) = r*x*(1 - x).

Original entry on oeis.org

3, 7, 0, 2, 1, 5, 4, 9, 2, 8, 1, 5, 3, 5, 8, 8, 7, 7, 0, 2, 2, 2, 6, 1, 2, 3, 1, 2, 4, 2, 6, 4, 1, 3, 6, 5, 5, 9, 1, 8, 6, 0, 3, 4, 2, 5, 9, 4, 6, 7, 0, 0, 8, 1, 7, 5, 7, 5, 0, 4, 2, 7, 8, 9, 9, 3, 5, 4, 6, 2, 6, 6, 2, 0, 1, 5, 8, 4, 7, 0, 9, 4, 8, 9, 6, 9, 1, 3, 1, 9, 8, 8, 4, 4, 4, 9, 7, 1, 2, 6
Offset: 1

Views

Author

Cheng Zhang, Apr 01 2012

Keywords

Comments

Root of a degree 63*2 = 126 polynomial.

Examples

			3.702154928...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1 + Sqrt[1 + T] /.  NSolve[97862157334118736160267353892330031361 - 24275883989858911295570196314376441888 T + 11949756847721247033090755550100031472 T^2 - 7305759525507048491687489710934851842 T^3 + 4979912078948645588349153608449721856 T^4 - 3626559126667087845228068253830569728 T^5 + 2762422187660818660072532819743957008 T^6 - 1880399068065596812679449750312116489 T^7 + 1211937495049324668386707923551814144 T^8 - 759866924055411176816609501610145824 T^9 + 466557599052858501899389873590498576 T^10 - 280965824140635821336538113950238208 T^11 + 165486490562715543623266844910996960 T^12 - 95328733468347624721143436596991728 T^13 + 53730737569188242850960902675061540 T^14 - 29631735433275573295736684905520448 T^15 + 15982002519220233506297359288643328 T^16 - 8426732734596962888735943308790072 T^17 + 4341578043750972227945942898034432 T^18 - 2184193663643426076323203313845088 T^19 + 1072045107586559381111681621669072 T^20 - 512897616845631175409335289338708 T^21 + 239007878643078614755697662563584 T^22 - 108415793383957757795350567428064 T^23 + 47846270482094728117141329426032 T^24 - 20533661180243125068599265318144 T^25 + 8564906198781819799124804441280 T^26 - 3470264291680473250164651552944 T^27 + 1364870535759255877272510765950 T^28 - 520676891296255096870756895040 T^29 + 192488968788190123648373004064 T^30 - 68893036110679144584159460492 T^31 + 23845858487001866959614915840 T^32 - 7973063091544280406837942464 T^33 + 2572118763623299179804574640 T^34 - 799578831968317708137874814 T^35 + 239196982314145129630174464 T^36 - 68763448836715397230901728 T^37 + 18967378806716848507574128 T^38 - 5011787964028065103857408 T^39 + 1266306625250424841996640 T^40 - 305348843999288091901136 T^41 + 70117811645069434371412 T^42 - 15296768944400171831616 T^43 + 3162019501419003256064 T^44 - 617525327585232743224 T^45 + 113570706028361676288 T^46 - 19599347048769496032 T^47 + 3161153679144274672 T^48 - 474387152691155748 T^49 + 65902567592614400 T^50 - 8426269030832672 T^51 + 984947439372048 T^52 - 104425099694592 T^53 + 9947578647040 T^54 - 841756889488 T^55 + 62385936393 T^56 - 3978343968 T^57 + 213336304 T^58 - 9328642 T^59 + 318464 T^60 - 7936 T^61 + 128 T^62 - T^63 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

A118454 Algebraic degree of the onset of the logistic map n-bifurcation.

Original entry on oeis.org

1, 1, 2, 2, 22, 40, 114, 12, 480, 944, 2026, 3918, 8166, 16104, 32630, 240, 131038, 260928, 524250, 1046418, 2096706, 4190168, 8388562, 16768200, 33554240, 67092432, 134216136, 268402446, 536870854, 1073672968, 2147483586, 65280, 8589928346, 17179606976, 34359737478
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

a(2^n) is A087046(n).

Examples

			The onsets begin at 1, 3, 1+2*sqrt(2), 1+sqrt(6), ...
		

Crossrefs

Programs

  • Mathematica
    degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; degRo[n_] := degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}]; Table[If[n <= 2, 1, 2 If[2^Round[Log2[n]] == n, degRp[n/2], degRo[n]]], {n, 1, 35}] (* Cheng Zhang, Apr 02 2012 *)

Extensions

More terms from Cheng Zhang, Apr 02 2012
Previous Showing 11-12 of 12 results.