cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118452 Decimal expansion of onset of logistic map 5-bifurcation.

Original entry on oeis.org

3, 7, 3, 8, 1, 7, 2, 3, 7, 5, 2, 6, 5, 9, 6, 2, 3, 6, 9, 4, 3, 0, 2, 6, 1, 5, 5, 9, 6, 7, 9, 5, 3, 1, 9, 7, 3, 4, 4, 4, 1, 1, 5, 4, 4, 0, 4, 8, 9, 9, 9, 1, 9, 2, 2, 9, 0, 4, 2, 8, 8, 4, 5, 5, 3, 3, 4, 9, 4, 4, 2, 3, 0, 7, 1, 7, 0, 9, 7, 7, 9, 6, 0, 5, 1, 7, 0, 9, 0, 4, 9, 5, 7, 4, 8, 4, 1, 7, 6, 5, 0, 6, 2, 1, 6
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

Algebraic of order 22.

Examples

			3.7381723752659623694...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Root[ -28629151 - 31399714*#1 - 14329471*#1^2 + 3613360*#1^3 + 13369804*#1^4 + 5836984*#1^5 - 1495060*#1^6 - 4002880*#1^7 - 1613676*#1^8 + 1484268*#1^9 + 808298*#1^10 - 234632*#1^11 - 294146*#1^12 + 8008*#1^13 + 103556*#1^14 - 17344*#1^15 - 18092*#1^16 + 7488*#1^17 + 116*#1^18 - 700*#1^19 + 189*#1^20 - 22*#1^21 + #1^22 &, 4],10,110][[1]]

A118453 Decimal expansion of onset of logistic map 6-bifurcation.

Original entry on oeis.org

3, 6, 2, 6, 5, 5, 3, 1, 6, 1, 6, 9, 4, 9, 7, 3, 7, 2, 5, 8, 7, 7, 2, 3, 2, 2, 5, 2, 0, 9, 3, 3, 1, 7, 4, 9, 1, 7, 0, 9, 4, 7, 5, 7, 8, 5, 7, 9, 5, 0, 2, 4, 6, 9, 6, 8, 0, 2, 4, 3, 7, 2, 2, 6, 7, 9, 0, 0, 7, 2, 1, 2, 0, 1, 0, 0, 8, 3, 9, 3, 8, 9, 1, 2, 6, 3, 2, 4, 7, 9, 3, 5, 6, 7, 3, 1, 3, 6, 2, 8, 3, 9, 9, 6, 9
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

Algebraic of order 40.

Examples

			3.6265531616949737258...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Root[3063651608241 + 583552687284*#1 + 1847916843066*#1^2 - 195203691396*#1^3 - 266965430067*#1^4 - 930539982708*#1^5 - 32353949026*#1^6 - 20846657216*#1^7 + 268499651644*#1^8 + 203273817100*#1^9 - 70347416426*#1^10 - 23477492116*#1^11 - 148805533357*#1^12 + 63425976316*#1^13 + 29299283358*#1^14 + 1219753488*#1^15 + 10442067223*#1^16 - 25709485160*#1^17 + 5757007476*#1^18 + 945192256*#1^19 + 3195434424*#1^20 + 746246488*#1^21 - 3839476860*#1^22 + 1483852216*#1^23 + 347099271*#1^24 - 126361652*#1^25 - 100717898*#1^26 - 75365092*#1^27 + 137026587*#1^28 - 48885412*#1^29 - 12966642*#1^30 + 16770304*#1^31 - 5563348*#1^32 + 195228*#1^33 + 516582*#1^34 - 225060*#1^35 + 52181*#1^36 - 7676*#1^37 + 722*#1^38 - 40*#1^39 + #1^40 &, 5],10,110][[1]]

A118746 Decimal expansion of onset of logistic map 7-bifurcation.

Original entry on oeis.org

3, 7, 0, 1, 6, 4, 0, 7, 6, 4, 1, 6, 0, 3, 4, 9, 5, 8, 1, 8, 2, 4, 6, 4, 3, 7, 8, 9, 8, 4, 0, 8, 8, 9, 2, 2, 0, 1, 4, 4, 2, 9, 1, 5, 8, 9, 5, 1, 5, 2, 0, 6, 4, 4, 3, 1, 2, 3, 4, 5, 6, 2, 5, 7, 3, 0, 7, 9, 1, 9, 3, 7, 3, 5, 5, 2, 9, 5, 9, 7, 7, 8, 2, 4, 0, 5, 1, 6, 2, 8, 0, 2, 4, 2, 0, 0, 8, 7, 0, 1, 8, 1, 3, 6, 9
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

Algebraic of order 114.

Examples

			3.7016407641603495818...
		

Crossrefs

A087046 Algebraic order of r_n, the value of r in the logistic map that corresponding to the onset of the period 2^n-cycle.

Original entry on oeis.org

1, 2, 12, 240, 65280, 4294901760, 18446744069414584320, 340282366920938463444927863358058659840, 115792089237316195423570985008687907852929702298719625575994209400481361428480
Offset: 1

Views

Author

Eric W. Weisstein, Aug 04 2003

Keywords

Crossrefs

Cf. A051179 (partial sums).

Programs

  • Mathematica
    Table[If[n <= 1, 1, 2^(2^(n - 1)) - 2^(2^(n - 2))], {n, 1, 10}] (* Cheng Zhang, Apr 02 2012 *)
  • PARI
    a(n) = 1<<(1<<(n-1)) - 1<<(1<<(n-2)); \\ Kevin Ryde, Jan 18 2024

Formula

a(n) = 2^(2^(n - 1)) - 2^(2^(n - 2)) with n>1, a(1)=1. - Cheng Zhang, Apr 02 2012
Sum_{n>=1} 1/a(n) = 1 + A346192. - Amiram Eldar, Jul 18 2021

Extensions

More terms from Cheng Zhang, Apr 03 2012

A006876 Mu-molecules in Mandelbrot set whose seeds have period n.

Original entry on oeis.org

1, 0, 1, 3, 11, 20, 57, 108, 240, 472, 1013, 1959, 4083, 8052, 16315, 32496, 65519, 130464, 262125, 523209, 1048353, 2095084, 4194281, 8384100, 16777120, 33546216, 67108068, 134201223, 268435427, 536836484, 1073741793, 2147417952, 4294964173, 8589803488, 17179868739
Offset: 1

Views

Author

Keywords

References

  • B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183.
  • R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; Table[degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}], {n, 1, 100}] (* Cheng Zhang, Apr 02 2012 *)
  • PARI
    A000740(n)=sumdiv(n,d,moebius(n/d)<<(d-1))
    a(n)=2*A000740(n)-sumdiv(n, d, eulerphi(n/d)*A000740(d)) \\ Charles R Greathouse IV, Feb 18 2013

Formula

a(n) = 2*l(n) - sum_{d|n} phi(n/d)*l(d), where l(n) = sum_{d|n} mu(n/d) 2^(d-1) (A000740), and phi(n) and mu(n) are the Euler totient function (A000010) and Moebius function (A008683), respectively. - Cheng Zhang, Apr 02 2012

Extensions

Web link changed to more relevant page by Robert Munafo, Nov 16 2010
More terms from Cheng Zhang, Apr 02 2012

A006875 Non-seed mu-atoms of period n in Mandelbrot set.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 12, 12, 23, 10, 51, 12, 75, 50, 144, 16, 324, 18, 561, 156, 1043, 22, 2340, 80, 4119, 540, 8307, 28, 17521, 30, 32928, 2096, 65567, 366, 135432, 36, 262179, 8250, 525348, 40, 1065093, 42, 2098263, 33876, 4194347, 46, 8456160, 420, 16779280
Offset: 1

Views

Author

Keywords

Comments

Definitions and Maxima source code on second Munafo web page. - Robert Munafo, Dec 12 2009

Examples

			From _Robert Munafo_, Dec 12 2009: (Start)
For n=1 the only mu-atom is the large cardioid, which is a seed.
For n=2 there is one, the large circular mu-atom centered at -1+0i, so a(2)=1.
For n=3 there is a seed (cardioid) at -1.75+0i, which doesn't count, and two non-seeds ("circles") at approx. -0.1225+-0.7448i, so a(3)=2. (End)
		

References

  • B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183.
  • R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[n/d] Sum[MoebiusMu[d/c] 2^(c - 1), {c, Divisors[d]}], {d, Drop[Divisors[n], -1]}], {n, 1, 100}] (* Cheng Zhang, Apr 03 2012 *)
  • Python
    from sympy import divisors, totient, mobius
    l=[0, 0]
    for n in range(2, 101):
        l.append(sum(totient(n//d)*sum(mobius(d//c)*2**(c - 1) for c in divisors(d)) for d in divisors(n)[:-1]))
    print(l[1:]) # Indranil Ghosh, Jul 12 2017

Formula

a(n) = Sum_{d|n, d < n} (phi(n/d) * sum_{c|d} (mu(d/c) 2^(c-1))), where phi(n) and mu(n) are the Euler totient function (A000010) and Moebius function (A008683), respectively. - Cheng Zhang, Apr 03 2012
a(n) = A000740(n) - A006876(n).

A140357 a(1)=1; a(n)=floor(4*a(n-1)*(n-a(n-1)) / n) for n > 1.

Original entry on oeis.org

1, 2, 2, 4, 3, 6, 3, 7, 6, 9, 6, 12, 3, 9, 14, 7, 16, 7, 17, 10, 20, 7, 19, 15, 24, 7, 20, 22, 21, 25, 19, 30, 10, 28, 22, 34, 11, 31, 25, 37, 14, 37, 20, 43, 7, 23, 46, 7, 24, 49, 7, 24, 52, 7, 24, 54, 11, 35, 56, 14, 43, 52, 36, 63, 7, 25, 62, 21, 58, 39, 70, 7, 25, 66, 31, 73, 15, 48
Offset: 1

Views

Author

Franklin T. Adams-Watters, May 30 2008, May 31 2008

Keywords

Comments

a(n)/n approximates the behavior of the logistic map x(n+1) = r*x(n)*(1-x(n)) at the critical value r = 4 where its iterated behavior becomes chaotic.
Conjecture: starting with any given n and any 1 <= a(n) <= n and applying the rule for the sequence produces a sequence which eventually joins this one. For example, starting with a(9)=5, the sequence continues 10,3,9,11,9, at which point it has joined.
There is a number x(1) such that iterating the logistic map x(n+1) = 4*x(n)*(1-x(n)) approaches a(n)/n; in particular x(n) > 1/2 iff a(n)/n > 1/2 and lim_{n->infinity} x(n)-a(n)/n = 0. x(1) is approximately 0.74300456748016924159182578873962328734252790178266693834898117732270042549583799064232908893034253248. It appears that |x(n)-a(n)/n| < 1/sqrt(n) for all n.

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[n_]:=a[n]=Floor[(4a[n-1](n-a[n-1]))/n];Table[a[n],{n,100}]  (* Harvey P. Dale, Mar 28 2011 *)
    nxt[{n_,a_}]:={n+1,Floor[4a (n+1-a)/(n+1)]}; NestList[nxt,{1,1},80][[All,2]] (* Harvey P. Dale, Dec 22 2019 *)
Showing 1-7 of 7 results.