cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006874 Number of mu-atoms of period n on continent of Mandelbrot set.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 6, 9, 10, 12, 10, 22, 12, 18, 24, 27, 16, 38, 18, 44, 36, 30, 22, 78, 36, 36, 50, 66, 28, 104, 30, 81, 60, 48, 72, 158, 36, 54, 72, 156, 40, 156, 42, 110, 152, 66, 46, 270, 78, 140, 96, 132, 52, 230, 120, 234, 108, 84, 58, 456, 60, 90, 228, 243, 144, 260
Offset: 1

Views

Author

Robert Munafo, Apr 28 1994

Keywords

Examples

			a(1)  = 1;
a(2)  = a(1);
a(3)  = 2*a(1);
a(4)  = 2*a(1) + a(2);
a(5)  = 4*a(1);
a(6)  = 2*a(1) + 2*a(2) + a(3);
a(7)  = 6*a(1);
a(8)  = 4*a(1) + 2*a(2) + a(4);
a(9)  = 6*a(1) + 2*a(3);
a(10) = 4*a(1) + 4*a(2) + a(5);
a(11) = 10*a(1);
a(12) = 4*a(1) + 2*a(2) + 2*a(3) + 2*a(4) + a(6); ...
		

References

  • B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183.
  • R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    sol:=[1]; for n in [2..66] do Append(~sol,&+[sol[Gcd(n,k)]:k in [1..n-1]]); end for; sol; // Marius A. Burtea, Sep 05 2019
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Block[{d = Most@Divisors@n}, Plus @@ (EulerPhi[n/d]*a /@ d)]; Array[a, 66] (* Robert G. Wilson v, Nov 22 2005 *)
  • PARI
    a(n) = if (n==1, 1, sumdiv(n, d, if (d==1, 0, a(n/d)*eulerphi(d)))); \\ Michel Marcus, Apr 19 2014
    
  • Python
    from sympy import divisors, totient
    l=[0, 1]
    for n in range(2, 101):
        l.append(sum([totient(n//d)*l[d] for d in divisors(n)[:-1]]))
    print(l[1:]) # Indranil Ghosh, Jul 12 2017
    

Formula

a(n) = Sum_{ d divides n, d1, a(1)=1, where phi is Euler totient function (A000010). - Vladeta Jovovic, Feb 09 2002
a(1)=1; for n > 1, a(n) = Sum_{k=1..n-1} a(gcd(n,k)). - Reinhard Zumkeller, Sep 25 2009
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} phi(k) * A(x^k). - Ilya Gutkovskiy, Sep 04 2019

Extensions

More terms from Vladeta Jovovic, Feb 09 2002

A006876 Mu-molecules in Mandelbrot set whose seeds have period n.

Original entry on oeis.org

1, 0, 1, 3, 11, 20, 57, 108, 240, 472, 1013, 1959, 4083, 8052, 16315, 32496, 65519, 130464, 262125, 523209, 1048353, 2095084, 4194281, 8384100, 16777120, 33546216, 67108068, 134201223, 268435427, 536836484, 1073741793, 2147417952, 4294964173, 8589803488, 17179868739
Offset: 1

Views

Author

Keywords

References

  • B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183.
  • R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; Table[degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}], {n, 1, 100}] (* Cheng Zhang, Apr 02 2012 *)
  • PARI
    A000740(n)=sumdiv(n,d,moebius(n/d)<<(d-1))
    a(n)=2*A000740(n)-sumdiv(n, d, eulerphi(n/d)*A000740(d)) \\ Charles R Greathouse IV, Feb 18 2013

Formula

a(n) = 2*l(n) - sum_{d|n} phi(n/d)*l(d), where l(n) = sum_{d|n} mu(n/d) 2^(d-1) (A000740), and phi(n) and mu(n) are the Euler totient function (A000010) and Moebius function (A008683), respectively. - Cheng Zhang, Apr 02 2012

Extensions

Web link changed to more relevant page by Robert Munafo, Nov 16 2010
More terms from Cheng Zhang, Apr 02 2012
Showing 1-2 of 2 results.