cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006876 Mu-molecules in Mandelbrot set whose seeds have period n.

Original entry on oeis.org

1, 0, 1, 3, 11, 20, 57, 108, 240, 472, 1013, 1959, 4083, 8052, 16315, 32496, 65519, 130464, 262125, 523209, 1048353, 2095084, 4194281, 8384100, 16777120, 33546216, 67108068, 134201223, 268435427, 536836484, 1073741793, 2147417952, 4294964173, 8589803488, 17179868739
Offset: 1

Views

Author

Keywords

References

  • B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183.
  • R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; Table[degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}], {n, 1, 100}] (* Cheng Zhang, Apr 02 2012 *)
  • PARI
    A000740(n)=sumdiv(n,d,moebius(n/d)<<(d-1))
    a(n)=2*A000740(n)-sumdiv(n, d, eulerphi(n/d)*A000740(d)) \\ Charles R Greathouse IV, Feb 18 2013

Formula

a(n) = 2*l(n) - sum_{d|n} phi(n/d)*l(d), where l(n) = sum_{d|n} mu(n/d) 2^(d-1) (A000740), and phi(n) and mu(n) are the Euler totient function (A000010) and Moebius function (A008683), respectively. - Cheng Zhang, Apr 02 2012

Extensions

Web link changed to more relevant page by Robert Munafo, Nov 16 2010
More terms from Cheng Zhang, Apr 02 2012

A332791 a(1) = 1; a(n+1) = Sum_{d|n} phi(d) * a(d).

Original entry on oeis.org

1, 1, 2, 5, 12, 49, 104, 625, 2512, 15077, 60358, 603581, 2414438, 28973257, 173840168, 1390721397, 11125773688, 178012379009, 1068074289230, 19225337206141, 153802697709496, 1845632372514581, 18456323725749392, 406039121966486625, 3248312975734309938
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[EulerPhi[d] a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 25}]
    a[1] = 1; a[n_] := a[n] = Sum[a[(n - 1)/GCD[n - 1, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 25}]

Formula

a(1) = 1; a(n+1) = Sum_{k=1..n} a(n/gcd(n, k)).
a(n) = Sum_{k=1..n} a(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A006875 Non-seed mu-atoms of period n in Mandelbrot set.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 12, 12, 23, 10, 51, 12, 75, 50, 144, 16, 324, 18, 561, 156, 1043, 22, 2340, 80, 4119, 540, 8307, 28, 17521, 30, 32928, 2096, 65567, 366, 135432, 36, 262179, 8250, 525348, 40, 1065093, 42, 2098263, 33876, 4194347, 46, 8456160, 420, 16779280
Offset: 1

Views

Author

Keywords

Comments

Definitions and Maxima source code on second Munafo web page. - Robert Munafo, Dec 12 2009

Examples

			From _Robert Munafo_, Dec 12 2009: (Start)
For n=1 the only mu-atom is the large cardioid, which is a seed.
For n=2 there is one, the large circular mu-atom centered at -1+0i, so a(2)=1.
For n=3 there is a seed (cardioid) at -1.75+0i, which doesn't count, and two non-seeds ("circles") at approx. -0.1225+-0.7448i, so a(3)=2. (End)
		

References

  • B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, NY, 1982, p. 183.
  • R. Penrose, The Emperor's New Mind, Penguin Books, NY, 1991, p. 138.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[n/d] Sum[MoebiusMu[d/c] 2^(c - 1), {c, Divisors[d]}], {d, Drop[Divisors[n], -1]}], {n, 1, 100}] (* Cheng Zhang, Apr 03 2012 *)
  • Python
    from sympy import divisors, totient, mobius
    l=[0, 0]
    for n in range(2, 101):
        l.append(sum(totient(n//d)*sum(mobius(d//c)*2**(c - 1) for c in divisors(d)) for d in divisors(n)[:-1]))
    print(l[1:]) # Indranil Ghosh, Jul 12 2017

Formula

a(n) = Sum_{d|n, d < n} (phi(n/d) * sum_{c|d} (mu(d/c) 2^(c-1))), where phi(n) and mu(n) are the Euler totient function (A000010) and Moebius function (A008683), respectively. - Cheng Zhang, Apr 03 2012
a(n) = A000740(n) - A006876(n).

A332792 a(1) = 1; a(n) = Sum_{d|n, d < n} phi(d) * a(d).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 6, 3, 6, 1, 16, 1, 8, 7, 30, 1, 30, 1, 34, 9, 12, 1, 104, 5, 14, 21, 60, 1, 96, 1, 270, 13, 18, 11, 278, 1, 20, 15, 330, 1, 174, 1, 136, 81, 24, 1, 1176, 7, 130, 19, 186, 1, 588, 15, 804, 21, 30, 1, 1204, 1, 32, 135, 4590, 17, 402, 1, 310, 25, 348
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 24 2020

Keywords

Crossrefs

Cf. A000010, A006874, A008578 (positions of 1's), A038045, A057660, A332791.

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[If[d < n, EulerPhi[d] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
    a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n, k] > 1, a[n/GCD[n, k]], 0], {k, 1, n}]; Table[a[n], {n, 1, 70}]
  • PARI
    up_to = 20000;
    A332792list(n) = { my(v=vector(n)); v[1] = 1; for(n=2, #v, v[n] = sumdiv(n, d, if(d==n, 0, v[d]*eulerphi(d)))); (v); };
    v332792 = A332792list(up_to);
    A332792(n) = v332792[n]; \\ Antti Karttunen, Jan 22 2025

Formula

a(1) = 1; a(n) = Sum_{k=1..n, gcd(n, k) > 1} a(n/gcd(n, k)).

A333613 a(1) = 1; thereafter a(n) = Sum_{k = 1..n} a(k/gcd(n,k)).

Original entry on oeis.org

1, 2, 4, 7, 15, 21, 51, 78, 158, 230, 568, 661, 1797, 2595, 5117, 7789, 19095, 21702, 59892, 81801, 171329, 258028, 630942, 713093, 1887828, 2776798, 5727675, 8335692, 20702970, 21420664, 62826604, 92041835, 189376593, 281410640, 656577018, 742729123, 2087788417
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 28 2020

Keywords

Crossrefs

Programs

  • Maple
    A333613:= proc(n) option remember;
    if n<3 then n;
    else add( A333613(lcm(n,j)/n), j = 1..n);
    end if; end proc;
    seq(A333613(n), n=1..40); # G. C. Greubel, Mar 08 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[a[k/GCD[n, k]], {k, n}]; Table[a[n], {n, 37}]
    a[1] = 1; a[n_] := a[n] = Sum[Sum[If[GCD[k, d] == 1, a[k], 0], {k, d}], {d, Divisors[n]}]; Table[a[n], {n, 37}]
  • Sage
    @CachedFunction
    def A333613(n): return 1 if n==1 else sum( A333613(lcm(n, j)/n) for j in (1..n) )
    [A333613(n) for n in (1..40)] # G. C. Greubel, Mar 08 2021

Formula

a(1) = 1; a(n) = Sum_{k = 1..n} a(lcm(n, k)/n).
a(1) = 1; a(n) = Sum_{d|n} Sum_{k = 1..d, gcd(d, k) = 1} a(k).

A338750 a(n) = 1 + Sum_{k=1..n-1} a(gcd(n,k)).

Original entry on oeis.org

1, 2, 3, 5, 5, 10, 7, 14, 13, 18, 11, 35, 13, 26, 31, 41, 17, 58, 19, 65, 45, 42, 23, 122, 41, 50, 63, 95, 29, 154, 31, 122, 73, 66, 83, 241, 37, 74, 87, 230, 41, 226, 43, 155, 193, 90, 47, 419, 85, 194, 115, 185, 53, 338, 135, 338, 129, 114, 59, 679, 61, 122, 283
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 06 2020

Keywords

Comments

Inverse Moebius transform of A006874.

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[GCD[n, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 63}]
    a[n_] := a[n] = 1 + DivisorSum[n, EulerPhi[n/#] a[#] &, # < n &]; Table[a[n], {n, 1, 63}]

Formula

G.f. A(x) satisfies: A(x) = x / (1 - x) + Sum_{k>=2} phi(k) * A(x^k).
a(n) = 1 + Sum_{d|n, d < n} phi(n/d) * a(d).
a(n) = Sum_{d|n} A006874(d).

A326824 a(1) = 1; a(n) = Sum_{d|n, d < n} phi(n/d) * d * a(d).

Original entry on oeis.org

1, 1, 2, 4, 4, 12, 6, 24, 18, 32, 10, 124, 12, 60, 72, 240, 16, 336, 18, 440, 132, 140, 22, 2088, 100, 192, 378, 1044, 28, 2096, 30, 4320, 300, 320, 312, 9636, 36, 396, 408, 10384, 40, 5040, 42, 3500, 3000, 572, 46, 61584, 294, 3920, 672, 5544, 52, 23148, 680
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[If[d < n, EulerPhi[n/d] d a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    a[1] = 1; a[n_] := Sum[GCD[n, k] a[GCD[n, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 55}]

Formula

a(1) = 1; a(n) = Sum_{k=1..n-1} gcd(n, k) * a(gcd(n, k)).

A327275 a(1) = 1; a(n) = Sum_{d|n, dA001615.

Original entry on oeis.org

1, 3, 4, 15, 6, 36, 8, 75, 28, 54, 12, 252, 14, 72, 72, 375, 18, 348, 20, 378, 96, 108, 24, 1620, 66, 126, 196, 504, 30, 936, 32, 1875, 144, 162, 144, 3108, 38, 180, 168, 2430, 42, 1248, 44, 756, 696, 216, 48, 9900, 120, 810, 216, 882, 54, 3108, 216, 3240, 240, 270, 60, 8568
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, n, Sum[If[d < n, DirichletConvolve[j, MoebiusMu[j]^2, j, n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 60}]
    nmax = 60; A[] = 0; Do[A[x] = x + Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} psi(k) * A(x^k).
a(p) = p + 1, where p is prime.

A332778 a(1) = 1; a(n) = Sum_{d|n, d < n} phi(n/d) * a(d)^2.

Original entry on oeis.org

1, 1, 2, 3, 4, 8, 6, 15, 14, 24, 10, 96, 12, 48, 56, 255, 16, 344, 18, 656, 108, 120, 22, 9840, 84, 168, 434, 2448, 28, 4608, 30, 65535, 260, 288, 264, 137376, 36, 360, 360, 432512, 40, 16776, 42, 14720, 7208, 528, 46, 96974880, 258, 9464, 608, 28656, 52, 425864, 600
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 1; a[n_] := Sum[If[d < n, EulerPhi[n/d] a[d]^2, 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 55}]
    a[1] = 1; a[n_] := Sum[a[GCD[n, k]]^2, {k, 1, n - 1}]; Table[a[n], {n, 1, 55}]

Formula

a(1) = 1; a(n) = Sum_{k=1..n-1} a(gcd(n, k))^2.

A346114 a(n+1) = 1 + Sum_{k=1..n} a(gcd(n,k)).

Original entry on oeis.org

1, 2, 4, 7, 12, 17, 28, 35, 51, 66, 91, 102, 150, 163, 210, 259, 325, 342, 454, 473, 608, 701, 823, 846, 1099, 1168, 1355, 1500, 1786, 1815, 2290, 2321, 2711, 2954, 3328, 3537, 4302, 4339, 4848, 5221, 6075, 6116, 7269, 7312, 8306, 9059, 9949, 9996, 11795, 12006
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[GCD[n - 1, k]], {k, 1, n - 1}]; Table[a[n], {n, 1, 50}]
    nmax = 50; A[] = 0; Do[A[x] = x (1/(1 - x) + Sum[EulerPhi[k] A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * (1 / (1 - x) + Sum_{k>=1} phi(k) * A(x^k)).
a(1) = 1; a(n+1) = 1 + Sum_{d|n} phi(n/d) * a(d).
Showing 1-10 of 11 results. Next