cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118454 Algebraic degree of the onset of the logistic map n-bifurcation.

Original entry on oeis.org

1, 1, 2, 2, 22, 40, 114, 12, 480, 944, 2026, 3918, 8166, 16104, 32630, 240, 131038, 260928, 524250, 1046418, 2096706, 4190168, 8388562, 16768200, 33554240, 67092432, 134216136, 268402446, 536870854, 1073672968, 2147483586, 65280, 8589928346, 17179606976, 34359737478
Offset: 1

Views

Author

Eric W. Weisstein, Apr 28 2006

Keywords

Comments

a(2^n) is A087046(n).

Examples

			The onsets begin at 1, 3, 1+2*sqrt(2), 1+sqrt(6), ...
		

Crossrefs

Programs

  • Mathematica
    degRp[n_] := Sum[MoebiusMu[n/d] 2^(d - 1), {d, Divisors[n]}]; degRo[n_] := degRp[n]*2 - Sum[EulerPhi[n/d] degRp[d], {d, Divisors[n]}]; Table[If[n <= 2, 1, 2 If[2^Round[Log2[n]] == n, degRp[n/2], degRo[n]]], {n, 1, 35}] (* Cheng Zhang, Apr 02 2012 *)

Extensions

More terms from Cheng Zhang, Apr 02 2012

A220294 a(n) = 1 - 2^(2^n) + 2^(2^(n+1)).

Original entry on oeis.org

3, 13, 241, 65281, 4294901761, 18446744069414584321, 340282366920938463444927863358058659841, 115792089237316195423570985008687907852929702298719625575994209400481361428481
Offset: 0

Views

Author

Michael Somos, Dec 10 2012

Keywords

Comments

An infinite coprime sequence defined by recursion.

Crossrefs

Programs

  • Magma
    [1 - 2^(2^n) + 2^(2^(n+1)): n in [0..10]]; // G. C. Greubel, Aug 10 2018
  • Mathematica
    Table[4^(2^m) - 2^(2^m) + 1, {m, 0, 7}] (* Michael De Vlieger, Aug 02 2016 *)
  • Maxima
    A220294(n):=1 - 2^(2^n) + 2^(2^(n+1))$ makelist(A220294(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
    
  • PARI
    {a(n) = if( n<0, 0, 1 - 2^(2^n) + 2^(2^(n+1)))};
    

Formula

A220161(n+1) = a(n) * A220161(n).
a(n+1) = 1 + (a(n) - 1) * (A220161(n) - 1).
a(n) = A002716(2*n) = 1 + A087046(n+2) = 1 + A111403(n).
a(n) = A002061(A001146(n)). - Pontus von Brömssen, Aug 31 2021

A220161 a(n) = 1 + 2^(2^n) + 2^(2^(n+1)).

Original entry on oeis.org

7, 21, 273, 65793, 4295032833, 18446744078004518913, 340282366920938463481821351505477763073, 115792089237316195423570985008687907853610267032561502502920958615344897851393
Offset: 0

Views

Author

Michel Marcus, Dec 06 2012

Keywords

Comments

For n >= 1, W. Sierpiński proves that a(n) is divisible by 21.
For n >= 1, A. Engel shows that a(n) = a(n-1) * A220294(n-1). - Hans Havermann, Mar 07 2015

References

  • Arthur Engel, Problem-Solving Strategies, Springer, 1998, pages 121-122 (E3, said to be a "recent competition problem from the former USSR").
  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #123.

Crossrefs

Programs

  • Magma
    [1 + 2^(2^n) + 2^(2^(n+1)): n in [0..10]]; // G. C. Greubel, Aug 10 2018
    
  • Mathematica
    Table[1+2^(2^n)+2^(2^(n+1)),{n,0,7}] (* Harvey P. Dale, Dec 16 2015 *)
  • Maxima
    A220161(n):=1 + 2^(2^n) + 2^(2^(n+1))$ makelist(A220161(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
    
  • PARI
    vector(10, n, n--; 1 + 2^(2^n) + 2^(2^(n+1))) \\ G. C. Greubel, Aug 10 2018
    
  • Python
    def a(n): return 1 + 2**(2**n) + 2**(2**(n+1))
    print([a(n) for n in range(8)]) # Michael S. Branicky, Jul 21 2021

Formula

a(n) = A000215(n+1) + A000215(n) - 1.
A070969(n) = sqrt(4*a(n) - 3). a(n+1) = a(n) * (1 + a(n) - A070969(n)) = a(n) * (1 + A087046(n+2)) hence a(n) divides a(n+1). - Michael Somos, Dec 10 2012
a(n) = A002061(A000215(n)). - Pontus von Brömssen, Aug 31 2021

A111403 a(n) = f(f(n+1)) - f(f(n)), where f(m) = 2^m.

Original entry on oeis.org

2, 12, 240, 65280, 4294901760, 18446744069414584320, 340282366920938463444927863358058659840, 115792089237316195423570985008687907852929702298719625575994209400481361428480
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2005

Keywords

Examples

			The binary representation of the first values shows what is going on:
10
1100
11110000
1111111100000000
11111111111111110000000000000000
...
		

Crossrefs

Probably equal to A087046(n+2). Doubled A040996.

Programs

  • Maple
    a:= n-> (p-> p*(p-1))(2^(2^n)):
    seq(a(n), n=0..7);  # Alois P. Heinz, Jan 03 2018

Formula

Conjecture: a(n) = A002716(2*n)-1. - R. J. Mathar, May 15 2007
From Alois P. Heinz, Jan 03 2018: (Start)
a(n) = 2^(2*2^n) - 2^(2^n).
a(n) = p*(p-1) with p = 2^(2^n). (End)
a(n) = A040996(n) * 2. - Tilman Piesk, Oct 04 2024

Extensions

Example and cross-reference from Olivier Gérard, Jun 23 2014

A211667 Number of iterations sqrt(sqrt(sqrt(...(n)...))) such that the result is < 2.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Hieronymus Fischer, Apr 30 2012

Keywords

Comments

Different from A001069, but equal for n < 256.

Examples

			a(n) = 1, 2, 3, 4, 5, ... for n = 2^1, 2^2, 2^4, 2^8, 2^16, ..., i.e., n = 2, 4, 16, 256, 65536, ... = A001146.
		

Crossrefs

Cf. A087046 (run lengths).

Programs

  • Mathematica
    a[n_] := Length[NestWhileList[Sqrt, n, # >= 2 &]] - 1; Array[a, 100] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    apply( A211667(n, c=0)={while(n>=2, n=sqrtint(n); c++); c}, [1..50]) \\ This defines the function A211667. The apply(...) provides a check and illustration. - M. F. Hasler, Dec 07 2018
    
  • PARI
    a(n) = if(n<=1,0, logint(logint(n,2),2) + 1); \\ Kevin Ryde, Jan 18 2024
    
  • Python
    A211667=lambda n: n and (n.bit_length()-1).bit_length() # Natalia L. Skirrow, May 16 2023

Formula

a(2^(2^n)) = a(2^(2^(n-1))) + 1, for n >= 1.
G.f.: g(x) = 1/(1-x)*Sum_{k>=0} x^(2^(2^k))
= (x^2 + x^4 + x^16 + x^256 + x^65536 + ...)/(1 - x).
a(n) = 1 + floor(log_2(log_2(n))) for n>=2. - Kevin Ryde, Jan 18 2024

A346192 Decimal expansion of Sum_{k>=0} 1/(2^(2^k)*(2^(2^k) - 1)).

Original entry on oeis.org

5, 8, 7, 5, 1, 5, 3, 1, 8, 8, 6, 0, 2, 8, 5, 1, 7, 6, 8, 6, 8, 1, 2, 6, 3, 3, 6, 6, 0, 6, 6, 8, 4, 1, 3, 2, 8, 3, 4, 3, 2, 7, 3, 8, 5, 6, 0, 1, 3, 3, 7, 2, 6, 3, 0, 3, 7, 3, 4, 6, 6, 3, 6, 1, 9, 6, 0, 3, 3, 4, 8, 6, 0, 3, 0, 5, 5, 8, 6, 1, 1, 0, 4, 0, 1, 5, 2, 7, 6, 8, 2, 8, 6, 9, 5, 8, 6, 6, 0, 0
Offset: 0

Views

Author

Amiram Eldar, Jul 09 2021

Keywords

Comments

This constant is transcendental (Schwarz, 1967).

Examples

			0.58751531886028517686812633660668413283432738560133...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sum[1/((2^(2^n) - 1)*2^(2^n)), {n, 0, 10}], 10, 100][[1]]

Formula

Equals Sum_{k>=2} 1/A087046(k).

A087089 Periods of logistic map intervals in order of size.

Original entry on oeis.org

1, 2, 4, 8, 3, 6, 16, 6, 5, 12, 10, 12, 32, 12, 10, 4, 5, 7, 24, 24, 20, 20, 8, 8, 7, 24, 10, 14, 9, 64, 24, 10, 16, 14, 20, 8, 18, 14, 9, 48, 48, 14, 20, 40, 6, 48, 16, 9, 40, 40, 7, 18, 48, 16, 20, 16, 28, 18, 9, 28
Offset: 1

Views

Author

Enrico T. Federighi (rico125162(AT)aol.com), Aug 11 2003

Keywords

Comments

The region of stability for period 8 after the point where period 4 splits in two is from 3.5440903596 to 3.5644072661 or a width of .0203169065. The period 3 cycle starts at 3.8284271247 = 1+sqrt(8) and ends at 3.8414990075, a width of .0130718828. This is less than that of period 8 so it follows it in sequence. The logistic map is just the real part of the Mandelbrot set.
The equation f(x)=a*x(1-x), f2(x)=f(f(x)) has a period 3 oscillation whenever 3.82843

References

Showing 1-7 of 7 results.