A220294
a(n) = 1 - 2^(2^n) + 2^(2^(n+1)).
Original entry on oeis.org
3, 13, 241, 65281, 4294901761, 18446744069414584321, 340282366920938463444927863358058659841, 115792089237316195423570985008687907852929702298719625575994209400481361428481
Offset: 0
-
[1 - 2^(2^n) + 2^(2^(n+1)): n in [0..10]]; // G. C. Greubel, Aug 10 2018
-
Table[4^(2^m) - 2^(2^m) + 1, {m, 0, 7}] (* Michael De Vlieger, Aug 02 2016 *)
-
A220294(n):=1 - 2^(2^n) + 2^(2^(n+1))$ makelist(A220294(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
-
{a(n) = if( n<0, 0, 1 - 2^(2^n) + 2^(2^(n+1)))};
A040996
Maximum number of distinct functions at the bottom of a Boolean (or Binary) Decision Diagram (or BDD) with negation by pointer complementation.
Original entry on oeis.org
1, 6, 120, 32640, 2147450880, 9223372034707292160, 170141183460469231722463931679029329920, 57896044618658097711785492504343953926464851149359812787997104700240680714240
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..12
- Cezar Campeanu, Nelma Moreira, and Rogerio Reis, Expected Compression Ratio for DFCA: experimental average case analysis, Technical Report Series: DCC-2011-07, December 2011, Departamento de Ciencia de Computadores, Universidade do Porto.
- Dagstuhl Seminar Design & Test, More about BDD's
- Alan J. Hu, David L. Dill, Andreas J. Drexler and C. Han Yang, Higher-level specification and verification with BDDs, In: von Bochmann G., Probst D.K. (eds) Computer Aided Verification. CAV 1992. Lecture Notes in Computer Science (1993), vol 663. Springer, Berlin, Heidelberg.
-
[2^(2^n)*(2^(2^n)-1)/2: n in [0..10]]; // Vincenzo Librandi, Sep 30 2011
-
a(n) = subs(t=2,modp(expand(t^(2^n-1)*(t+1)^(2^n-1)),2)); # Luis H. Gallardo, Nov 18 2021
-
f[x_]:=Module[{c=2^(2^x)},(c(c-1))/2]; Array[f,10,0] (* Harvey P. Dale, Sep 29 2011 *)
-
a(n)=if(n<=0,n==0,2^(2^n)*(2^(2^n)-1)/2)
Showing 1-2 of 2 results.
Comments