cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255772 Start with 7; thereafter, in order of appearance, the prime factors of A220294.

Original entry on oeis.org

7, 3, 13, 241, 97, 673, 193, 22253377, 18446744069414584321, 769, 442499826945303593556473164314770689, 349621839326921795694385454593, 331192380488114152600457428497953408512758882817, 212780015855109121
Offset: 1

Views

Author

Hans Havermann, Mar 06 2015

Keywords

Comments

A220161(n-1) = the product of the first A255770(n) terms.

References

  • Arthur Engel, Problem-Solving Strategies, Springer, 1998, pages 121-122 (E3, said to be a "recent competition problem from the former USSR").

Crossrefs

A255771 Number of distinct prime factors of A220294(n).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 2, 4, 2, 2
Offset: 0

Views

Author

Hans Havermann, Mar 06 2015

Keywords

Comments

These are the first differences of A255770.

Examples

			A220294(0) = 3 so a(0) = 1.
A220294(1) = 13 so a(1) = 1.
A220294(2) = 241 so a(2) = 1.
A220294(3) = 97*673 so a(3) = 2.
A220294(4) = 193*22253377 so a(4) = 2.
		

References

  • Arthur Engel, Problem-Solving Strategies, Springer, 1998, pages 121-122 (E3, said to be a "recent competition problem from the former USSR").

Crossrefs

Extensions

Offset changed by Arkadiusz Wesolowski, Aug 01 2016
a(9) was found in 2008 by Geoffrey Reynolds. a(10) was found by Anders Björn and Hans Riesel. - Arkadiusz Wesolowski, Aug 02 2016

A220161 a(n) = 1 + 2^(2^n) + 2^(2^(n+1)).

Original entry on oeis.org

7, 21, 273, 65793, 4295032833, 18446744078004518913, 340282366920938463481821351505477763073, 115792089237316195423570985008687907853610267032561502502920958615344897851393
Offset: 0

Views

Author

Michel Marcus, Dec 06 2012

Keywords

Comments

For n >= 1, W. Sierpiński proves that a(n) is divisible by 21.
For n >= 1, A. Engel shows that a(n) = a(n-1) * A220294(n-1). - Hans Havermann, Mar 07 2015

References

  • Arthur Engel, Problem-Solving Strategies, Springer, 1998, pages 121-122 (E3, said to be a "recent competition problem from the former USSR").
  • W. Sierpiński, 250 Problems in Elementary Number Theory. New York: American Elsevier, 1970. Problem #123.

Crossrefs

Programs

  • Magma
    [1 + 2^(2^n) + 2^(2^(n+1)): n in [0..10]]; // G. C. Greubel, Aug 10 2018
    
  • Mathematica
    Table[1+2^(2^n)+2^(2^(n+1)),{n,0,7}] (* Harvey P. Dale, Dec 16 2015 *)
  • Maxima
    A220161(n):=1 + 2^(2^n) + 2^(2^(n+1))$ makelist(A220161(n),n,0,10); /* Martin Ettl, Dec 10 2012 */
    
  • PARI
    vector(10, n, n--; 1 + 2^(2^n) + 2^(2^(n+1))) \\ G. C. Greubel, Aug 10 2018
    
  • Python
    def a(n): return 1 + 2**(2**n) + 2**(2**(n+1))
    print([a(n) for n in range(8)]) # Michael S. Branicky, Jul 21 2021

Formula

a(n) = A000215(n+1) + A000215(n) - 1.
A070969(n) = sqrt(4*a(n) - 3). a(n+1) = a(n) * (1 + a(n) - A070969(n)) = a(n) * (1 + A087046(n+2)) hence a(n) divides a(n+1). - Michael Somos, Dec 10 2012
a(n) = A002061(A000215(n)). - Pontus von Brömssen, Aug 31 2021

A255770 Number of distinct prime factors of A220161(n).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 11, 13, 17, 19, 21
Offset: 0

Views

Author

Hans Havermann, Mar 06 2015

Keywords

Comments

This strictly increasing sequence proves (yet again) the infinitude of primes.

Examples

			A220161(0) = 7 so a(0) = 1.
A220161(1) = 3*7 so a(1) = 2.
A220161(2) = 3*7*13 so a(2) = 3.
A220161(3) = 3*7*13*241 so a(3) = 4.
A220161(4) = 3*7*13*97*241*673 so a(4) = 6.
		

References

  • Arthur Engel, Problem-Solving Strategies, Springer, 1998, pages 121-122 (E3, said to be a "recent competition problem from the former USSR").

Crossrefs

Extensions

Offset changed by Arkadiusz Wesolowski, Aug 01 2016

A275528 Prime factors of numbers of the form 4^(2^m) - 2^(2^m) + 1 with m >= 0.

Original entry on oeis.org

3, 13, 97, 193, 241, 673, 769, 12289, 786433, 22253377, 39714817, 152371201, 597688321, 1107296257, 3221225473, 7348420609, 11560943617, 29796335617, 74490839041, 77309411329, 206158430209, 246423748609, 448203325441, 2422022479873, 5469640851457, 28114855919617
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 31 2016

Keywords

Comments

Primes p other than 3 such that one third of the multiplicative order of 2 (mod p) is a power of 2.
Primes in A255772 (except 7), sorted.

Examples

			3 divides 2^2 - 2^1 + 1 = 3.
13 divides 2^4 - 2^2 + 1 = 13.
97 divides 2^16 - 2^8 + 1 = 65281.
193 divides 2^32 - 2^16 + 1 = 4294901761.
241 divides 2^8 - 2^4 + 1 = 241.
673 divides 2^16 - 2^8 + 1 = 65281.
769 divides 2^128 - 2^64 + 1 = 340282366920938463444927863358058659841.
12289 divides 2^2048 - 2^1024 + 1.
		

Crossrefs

Programs

  • PARI
    forprime(p=3, 10^15, o=znorder(Mod(2, p))/3; x=ispower(2*o); if(p==3||2^(x-1)==o, print1(p, ", ")));

A002716 An infinite coprime sequence defined by recursion.

Original entry on oeis.org

3, 5, 13, 17, 241, 257, 65281, 65537, 4294901761, 4294967297, 18446744069414584321, 18446744073709551617, 340282366920938463444927863358058659841
Offset: 0

Views

Author

Keywords

Comments

Every term is relatively prime to all others. - Michael Somos, Feb 01 2004

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    a[0] = 3; a[1] = 5;
    a[n_] := a[n] = If[OddQ[n], a[n-1] + a[n-2] - 1, a[n-1]^2 - 3*a[n-1] + 3];
    Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Aug 16 2018, after Michel Somos *)
  • PARI
    {a(n) = if( n<2, 3 * (n>=0) + 2 * (n>0), if( n%2, a(n-1) + a(n-2) - 1, a(n-1)^2 - 3 * a(n-1) + 3))} /* Michael Somos, Feb 01 2004 */

Formula

a(2*n + 1) = a(2*n) + a(2*n - 1) - 1, a(2*n) = a(2*n - 1)^2 - 3 * a(2*n - 1) + 3, a(0) = 3, a(1) = 5. - Michael Somos, Feb 01 2004
Conjecture: a(2n+1)=A001146(n+1)+1. - R. J. Mathar, May 15 2007
a(2*n) = A220294(n). a(2*n + 1) = A000215(n+1). - Michael Somos, Dec 10 2012

Extensions

More terms from Jeffrey Shallit
Edited by Michael Somos, Feb 01 2004
Showing 1-6 of 6 results.