cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A182377 Total sum of positive ranks of all regions in the last shell of n.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 8, 14, 21, 32, 45, 67, 91
Offset: 1

Views

Author

Omar E. Pol, Apr 29 2012

Keywords

Comments

The rank of a region of n is the largest part minus the number of parts. For the definition of "region of n" see A206437. For the definition of "last shell of n" see A135010.
a(n) is also the sum of positive integers in row n of triangle A194447. First differs from A000094 at a(12).

Examples

			For n = 7 the last shell of 7 contains four regions: [3],[5,2],[4],[7,3,2,2,1,1,1,1,1,1,1,1,1,1,1] so we have:
----------------------------------------------------------
.        Largest    Number
Region     part    of parts    Rank
----------------------------------------------------------
.  1        3         1          2
.  2        5         2          3
.  3        4         1          3
.  4        7        15         -8
.
The sum of positive ranks is a(7) = 2 + 3 + 3 = 8.
		

Crossrefs

A196039 Total sum of the smallest part of every partition of every shell of n.

Original entry on oeis.org

0, 1, 4, 9, 18, 30, 50, 75, 113, 162, 231, 318, 441, 593, 798, 1058, 1399, 1824, 2379, 3066, 3948, 5042, 6422, 8124, 10264, 12884, 16138, 20120, 25027, 30994, 38312, 47168, 57955, 70974, 86733, 105676, 128516, 155850, 188644, 227783, 274541
Offset: 0

Views

Author

Omar E. Pol, Oct 27 2011

Keywords

Comments

Partial sums of A046746.
Total sum of parts of all regions of n that contain 1 as a part. - Omar E. Pol, Mar 11 2012

Examples

			For n = 5 the seven partitions of 5 are:
5
3         + 2
4             + 1
2     + 2     + 1
3         + 1 + 1
2     + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
.
The five shells of 5 (see A135010 and also A138121), written as a triangle, are:
1
2, 1
3, 1, 1
4, (2, 2), 1, 1, 1
5, (3, 2), 1, 1, 1, 1, 1
.
The first "2" of row 4 does not count, also the "3" of row 5 does not count, so we have:
1
2, 1
3, 1, 1
4, 2, 1, 1, 1
5, 2, 1, 1, 1, 1, 1
.
thus a(5) = 1+2+1+3+1+1+4+2+1+1+1+5+2+1+1+1+1+1 = 30.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
         `if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(nAlois P. Heinz, Apr 03 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == i, n, 0] + If[i < 1, 0, b[n, i-1] + If[n < i, 0, b[n-i, i]]]; Accumulate[Table[b[n, n], {n, 0, 50}]] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)

Formula

a(n) = A066186(n) - A196025(n).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*Pi*sqrt(2*n)). - Vaclav Kotesovec, Jul 06 2019

A220483 Total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part: a(n) = n + d(n) + p(n-1) + spt(n) - A000070(n) - sigma(n) - 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 11, 19, 26, 34, 51, 67, 91, 118, 158, 200, 271, 331, 433, 538, 699, 849, 1089, 1323, 1674, 2030, 2542, 3066, 3813, 4567, 5640, 6760, 8272, 9871, 12002, 14290, 17287, 20515, 24675, 29214, 34981, 41282, 49216, 57957, 68798
Offset: 1

Views

Author

Omar E. Pol, Jan 16 2013

Keywords

Comments

For the definition of "emergent part" see A182699, A182709.

Crossrefs

Programs

  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
    a[n_] := n + DivisorSigma[0, n] + PartitionsP[n - 1] + b[n, n] -
      Total[PartitionsP[Range[0, n]]] - DivisorSigma[1, n] - 1;
    Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)

Formula

a(n) = n + A000005(n) + A000041(n-1) + A092269(n) - A000070(n) - A000203(n) - 1.

Extensions

a(49) corrected by Jean-François Alcover, Jun 05 2021

A220489 Total number of smallest parts in all partitions of n minus the total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part.

Original entry on oeis.org

1, 3, 5, 10, 14, 26, 34, 56, 77, 114, 153, 227, 296, 414, 555, 750, 981, 1316, 1702, 2241, 2887, 3727, 4761, 6112, 7725, 9787, 12316, 15473, 19307, 24099, 29867, 37004, 45626, 56147, 68856, 84297, 102793, 125167, 151969, 184166, 222553, 268529, 323152
Offset: 1

Views

Author

Omar E. Pol, Feb 24 2013

Keywords

Comments

First differs from A092269 at a(7).
For the definition of "emergent part" see A182699, A182709.

Crossrefs

Formula

a(n) = spt(n) - A220483(n) = 1 + sigma(n) + A000070(n) - p(n-1) - d(n) - n.
a(n) = A092269(n) - A220483(n) = 1 + A000203(n) + A000070(n) - A000041(n-1) - A000005(n) - n.

A330242 Sum of largest emergent parts of the partitions of n.

Original entry on oeis.org

0, 0, 0, 2, 3, 9, 12, 24, 33, 54, 72, 112, 144, 210, 273, 379, 485, 661, 835, 1112, 1401, 1825, 2284, 2944, 3652, 4645, 5745, 7223, 8879, 11080, 13541, 16760, 20406, 25062, 30379, 37102, 44761, 54351, 65347, 78919, 94517, 113645, 135603, 162331, 193088, 230182, 272916, 324195, 383169, 453571
Offset: 1

Views

Author

Omar E. Pol, Dec 06 2019

Keywords

Comments

In other words: a(n) is the sum of the largest parts of all partitions of n that contain emergent parts.
The partitions of n that contain emergent parts are the partitions that contain neither 1 nor n as a part. All parts of these partitions are emergent parts except the last part of every partition.
For the definition of emergent part see A182699.

Examples

			For n = 9 the diagram of
the partitions of 9 that
do not contain 1 as a part
is as shown below:           Partitions
.
    |_ _ _|   |   |   |      [3, 2, 2, 2]
    |_ _ _ _ _|   |   |      [5, 2, 2]
    |_ _ _ _|     |   |      [4, 3, 2]
    |_ _ _ _ _ _ _|   |      [7, 2]
    |_ _ _|     |     |      [3, 3, 3]
    |_ _ _ _ _ _|     |      [6, 3]
    |_ _ _ _ _|       |      [5, 4]
    |_ _ _ _ _ _ _ _ _|      [9]
.
Note that the above diagram is also the "head" of the last section of the set of partitions of 9, where the "tail" is formed by A000041(9-1)= 22 1's.
The diagram of the
emergent parts is as
shown below:                 Emergent parts
.
    |_ _ _|   |   |          [3, 2, 2]
    |_ _ _ _ _|   |          [5, 2]
    |_ _ _ _|     |          [4, 3]
    |_ _ _ _ _ _ _|          [7]
    |_ _ _|     |            [3, 3]
    |_ _ _ _ _ _|            [6]
    |_ _ _ _ _|              [5]
.
The sum of the largest emergent parts is 3 + 5 + 4 + 7 + 3 + 6 + 5 = 33, so a(9) = 33.
		

Crossrefs

Formula

a(n) = A138137(n) - n.
a(n) = A207031(n,1) - n.
Previous Showing 21-25 of 25 results.