A182377
Total sum of positive ranks of all regions in the last shell of n.
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 8, 14, 21, 32, 45, 67, 91
Offset: 1
For n = 7 the last shell of 7 contains four regions: [3],[5,2],[4],[7,3,2,2,1,1,1,1,1,1,1,1,1,1,1] so we have:
----------------------------------------------------------
. Largest Number
Region part of parts Rank
----------------------------------------------------------
. 1 3 1 2
. 2 5 2 3
. 3 4 1 3
. 4 7 15 -8
.
The sum of positive ranks is a(7) = 2 + 3 + 3 = 8.
Cf.
A000094,
A135010,
A138121,
A182699,
A182709,
A183152,
A186114,
A187219,
A194436-
A194439,
A194447-
A194448,
A196025,
A206437,
A209616.
A196039
Total sum of the smallest part of every partition of every shell of n.
Original entry on oeis.org
0, 1, 4, 9, 18, 30, 50, 75, 113, 162, 231, 318, 441, 593, 798, 1058, 1399, 1824, 2379, 3066, 3948, 5042, 6422, 8124, 10264, 12884, 16138, 20120, 25027, 30994, 38312, 47168, 57955, 70974, 86733, 105676, 128516, 155850, 188644, 227783, 274541
Offset: 0
For n = 5 the seven partitions of 5 are:
5
3 + 2
4 + 1
2 + 2 + 1
3 + 1 + 1
2 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1
.
The five shells of 5 (see A135010 and also A138121), written as a triangle, are:
1
2, 1
3, 1, 1
4, (2, 2), 1, 1, 1
5, (3, 2), 1, 1, 1, 1, 1
.
The first "2" of row 4 does not count, also the "3" of row 5 does not count, so we have:
1
2, 1
3, 1, 1
4, 2, 1, 1, 1
5, 2, 1, 1, 1, 1, 1
.
thus a(5) = 1+2+1+3+1+1+4+2+1+1+1+5+2+1+1+1+1+1 = 30.
Cf.
A026905,
A046746,
A066186,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196025,
A196930,
A196931,
A198381,
A206437.
-
b:= proc(n, i) option remember;
`if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(nAlois P. Heinz, Apr 03 2012
-
b[n_, i_] := b[n, i] = If[n == i, n, 0] + If[i < 1, 0, b[n, i-1] + If[n < i, 0, b[n-i, i]]]; Accumulate[Table[b[n, n], {n, 0, 50}]] (* Jean-François Alcover, Feb 05 2017, after Alois P. Heinz *)
A220483
Total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part: a(n) = n + d(n) + p(n-1) + spt(n) - A000070(n) - sigma(n) - 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 1, 1, 3, 5, 8, 11, 19, 26, 34, 51, 67, 91, 118, 158, 200, 271, 331, 433, 538, 699, 849, 1089, 1323, 1674, 2030, 2542, 3066, 3813, 4567, 5640, 6760, 8272, 9871, 12002, 14290, 17287, 20515, 24675, 29214, 34981, 41282, 49216, 57957, 68798
Offset: 1
Cf.
A000005,
A000041,
A000070,
A000203,
A002865,
A092269,
A182699,
A182709,
A183152,
A193827,
A195820,
A206437,
A215513,
A220479,
A220489.
-
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r == 0, q, 0] + Sum[b[n - i*j, i - 1], {j, 0, n/i}]];
a[n_] := n + DivisorSigma[0, n] + PartitionsP[n - 1] + b[n, n] -
Total[PartitionsP[Range[0, n]]] - DivisorSigma[1, n] - 1;
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)
A220489
Total number of smallest parts in all partitions of n minus the total number of smallest parts that are also emergent parts in all partitions of n with at least one distinct part.
Original entry on oeis.org
1, 3, 5, 10, 14, 26, 34, 56, 77, 114, 153, 227, 296, 414, 555, 750, 981, 1316, 1702, 2241, 2887, 3727, 4761, 6112, 7725, 9787, 12316, 15473, 19307, 24099, 29867, 37004, 45626, 56147, 68856, 84297, 102793, 125167, 151969, 184166, 222553, 268529, 323152
Offset: 1
A330242
Sum of largest emergent parts of the partitions of n.
Original entry on oeis.org
0, 0, 0, 2, 3, 9, 12, 24, 33, 54, 72, 112, 144, 210, 273, 379, 485, 661, 835, 1112, 1401, 1825, 2284, 2944, 3652, 4645, 5745, 7223, 8879, 11080, 13541, 16760, 20406, 25062, 30379, 37102, 44761, 54351, 65347, 78919, 94517, 113645, 135603, 162331, 193088, 230182, 272916, 324195, 383169, 453571
Offset: 1
For n = 9 the diagram of
the partitions of 9 that
do not contain 1 as a part
is as shown below: Partitions
.
|_ _ _| | | | [3, 2, 2, 2]
|_ _ _ _ _| | | [5, 2, 2]
|_ _ _ _| | | [4, 3, 2]
|_ _ _ _ _ _ _| | [7, 2]
|_ _ _| | | [3, 3, 3]
|_ _ _ _ _ _| | [6, 3]
|_ _ _ _ _| | [5, 4]
|_ _ _ _ _ _ _ _ _| [9]
.
Note that the above diagram is also the "head" of the last section of the set of partitions of 9, where the "tail" is formed by A000041(9-1)= 22 1's.
The diagram of the
emergent parts is as
shown below: Emergent parts
.
|_ _ _| | | [3, 2, 2]
|_ _ _ _ _| | [5, 2]
|_ _ _ _| | [4, 3]
|_ _ _ _ _ _ _| [7]
|_ _ _| | [3, 3]
|_ _ _ _ _ _| [6]
|_ _ _ _ _| [5]
.
The sum of the largest emergent parts is 3 + 5 + 4 + 7 + 3 + 6 + 5 = 33, so a(9) = 33.
Cf.
A000041,
A002865,
A006128,
A135010,
A138135,
A138137,
A141285,
A182699,
A182703,
A182709,
A186114,
A186412,
A193870,
A194446,
A194447,
A211978,
A206437,
A207031,
A299474,
A299475.
Comments