cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A183009 a(n) = 24*n*p(n) = 24*n*A000041(n).

Original entry on oeis.org

24, 96, 216, 480, 840, 1584, 2520, 4224, 6480, 10080, 14784, 22176, 31512, 45360, 63360, 88704, 121176, 166320, 223440, 300960, 399168, 529056, 692760, 907200, 1174800, 1520064, 1950480, 2498496, 3177240, 4034880, 5090448, 6412032
Offset: 1

Views

Author

Omar E. Pol, Jan 22 2011

Keywords

Comments

a(n) is also the sum of the partition number of n and the "trace" Tr(n) of A183011. a(n) = p(n) + Tr(n).
a(n) is also the number of "sectors" or "half-periods" in all partitions of n in some versions of the shell model of partitions of A135010.

Examples

			The number of partitions of 6 is p(6) = A000041(6) = 11, so a(6) = 24*6*11 = 1584.
Also the trace Tr(6) = A183011(6) = 1573, so a(6) = p(6) + Tr(6) = 11 + 1573 = 1584.
		

Crossrefs

Programs

  • Mathematica
    Table[24n*PartitionsP[n],{n,40}] (* Harvey P. Dale, Mar 07 2019 *)

Formula

a(n) = A008606(n)*A000041(n) = 24*A066186(n) = n*A183008(n).
a(n) = p(n) + Tr(n) = A000041(n) + A183011(n).
a(n) = 12*M_2(n) = 24*spt(n) + 12*N_2(n) = 12*A220909(n) = 24*A092269(n) + 12*A220908(n). - Omar E. Pol, Feb 17 2013

A182734 Number of parts in all partitions of 2n that do not contain 1 as a part.

Original entry on oeis.org

0, 1, 3, 8, 17, 34, 68, 123, 219, 382, 642, 1055, 1713, 2713, 4241, 6545, 9950, 14953, 22255, 32752, 47774, 69104, 99114, 141094, 199489, 280096, 390836, 542170, 747793, 1025912, 1400425, 1902267, 2572095, 3462556, 4641516, 6196830, 8241460, 10919755, 14416885
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Comments

Essentially this is a bisection (even part) of A138135.

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; local p,q;
          if n<0 then [0,0]
        elif n=0 then [1,0]
        elif i=1 then [0,0]
        else p, q:= b(n,i-1), b(n-i,i);
             [p[1]+q[1], p[2]+q[2]+q[1]]
          fi
        end:
    a:= n-> b(2*n, 2*n)[2]:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 03 2010
  • Mathematica
    Table[Length[Flatten[DeleteCases[IntegerPartitions[2n],?(MemberQ[ #,1]&)]]], {n,0,40}] (* _Harvey P. Dale, Aug 08 2013 *)
    b[n_] := DivisorSigma[0, n]-1+Sum[(DivisorSigma[0, k]-1)*(PartitionsP[n-k] - PartitionsP[n-k-1]), {k, 1, n-1}]; a[0] = 0; a[n_] := b[2n]; Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Oct 07 2015 *)

Extensions

More terms from Alois P. Heinz, Dec 03 2010

A182736 Sum of parts in all partitions of 2n that do not contain 1 as a part.

Original entry on oeis.org

0, 2, 8, 24, 56, 120, 252, 476, 880, 1584, 2740, 4620, 7680, 12428, 19824, 31170, 48224, 73678, 111384, 166364, 246120, 360822, 524216, 755504, 1080912, 1535050, 2165592, 3036096, 4230632, 5861828, 8078820, 11076362, 15112384, 20523492, 27747128
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Comments

Essentially this is a bisection (even indices) of A138880.

Crossrefs

Programs

  • Maple
    b:= proc(n,i) option remember; local p,q;
          if n<0 then [0,0]
        elif n=0 then [1,0]
        elif i<2 then [0,0]
        else p, q:= b(n,i-1), b(n-i,i);
            [p[1]+q[1], p[2]+q[2]+q[1]*i]
          fi
        end:
    a:= n-> b(2*n,2*n)[2]:
    seq(a(n), n=0..34); # Alois P. Heinz, Dec 03 2010
  • Mathematica
    b[n_] := (PartitionsP[n] - PartitionsP[n-1])*n; a[n_] := b[2n]; Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Oct 07 2015 *)

Formula

a(n) = 2*n*A182746(n). - Omar E. Pol, Dec 05 2010

Extensions

More terms from Alois P. Heinz, Dec 03 2010

A182992 Number of parts of the n-th subshell of the head of the last section of the set of partitions of any even integer >= 2n.

Original entry on oeis.org

1, 2, 5, 9, 17, 34, 55, 96, 163, 260, 413, 658, 1000, 1528, 2304, 3405, 5003, 7302, 10497, 15022, 21330, 30010, 41980, 58395, 80607, 110740, 151334, 205623, 278119, 374513, 501842, 669828, 890461, 1178960, 1555314
Offset: 1

Views

Author

Omar E. Pol, Feb 06 2011

Keywords

Comments

The last section of the set of partitions of 2n contains n subshells.
Also first differences of A182734. - Omar E. Pol, Mar 03 2011

Examples

			a(5)=17 because the 5th subshell of the head of the last section of any even integer >= 10 looks like this:
(10 . . . . . . . . . )
( 5 . . . . 5 . . . . )
( 6 . . . . . 4 . . . )
( 7 . . . . . . 3 . . )
( 4 . . . 3 . . 3 . . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
.                (2 . )
The subshell has 17 parts, so a(5)=17.
		

Crossrefs

Formula

a(1) = 1. a(n) = A138135(2n) - A138135(2n-2), n >= 2.

Extensions

More terms from Omar E. Pol, Mar 03 2011

A194803 Number of parts that are visible in one of the three views of the shell model of partitions version "Tree" with n shells.

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 17, 23, 33, 46, 64, 86, 121, 161, 217, 291, 388, 507, 671, 870, 1131, 1458, 1872, 2383, 3042, 3840, 4841, 6076, 7605, 9460, 11765, 14544, 17950, 22073, 27077, 33092, 40395, 49113, 59611, 72162, 87185, 105035, 126366
Offset: 0

Views

Author

Omar E. Pol, Jan 27 2012

Keywords

Comments

The physical model shows each part represented by an object, for example using a cube or a cuboid. In this case the small version of the model shows each part as a cube of side 1 which is labeled with the size of the part. On the same way the large version of the model shows each part as a cuboid of sides 1 x 1 x L where L is the size of the part. The cuboid is labeled with the level of the part. For the sum of parts see A194804. For more information about the shell model see A135010 and A194805.

Examples

			Illustration of one of the three views with seven shells:
1) Small version:
.
Level
1        A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
2                     3 2 2 1 2 2 3
3                         2 1 2
4                           1
5      Table 2.0            1            Table 2.1
6                           1
7                           1
.
.  A182742  A182982                   A182743  A182983
.  A182992  A182994                   A182993  A182995
.
2) Large version:
.
.                   . . . . 1 . . . .
.                   . . . 1 2 . . . .
.                   . 1 . . 2 1 . . .
.                   . . 1 2 2 . . 1 .
.                   . . . . 2 2 1 . .
.                   1 2 2 3 2 . . . .
.                           2 3 2 2 1
.
The large version shows the parts labeled with the level of the part where "the level of a part" is its position in the partition. In both versions there are 23 parts that are visible, so a(7) = 23. Also using the formula we have a(7) = 7+8+8 = 23.
		

Crossrefs

Formula

a(n) = n + A138135(n-1) + A138135(n), if n >= 2.

A194797 Imbalance of the sum of parts of all partitions of n.

Original entry on oeis.org

0, -2, 1, -7, 3, -21, 7, -49, 23, -97, 57, -195, 117, -359, 256, -624, 498, -1086, 909, -1831, 1634, -2986, 2833, -4847, 4728, -7700, 7798, -12026, 12537, -18633, 19745, -28479, 30723, -42955, 47100, -64284, 71136, -95228, 106402, -139718, 157327, -203495
Offset: 1

Views

Author

Omar E. Pol, Jan 31 2012

Keywords

Comments

Consider the three-dimensional structure of the shell model of partitions, version "tree" (see example). Note that only the parts > 1 produce the imbalance. The 1's are located in the central columns therefore they do not produce the imbalance. Note that every column contains exactly the same parts. For more information see A135010.

Examples

			For n = 6 the illustration of the three views of the shell model with 6 shells shows an imbalance (see below):
------------------------------------------------------
Partitions                Tree             Table 1.0
of 6.                    A194805            A135010
------------------------------------------------------
6                   6                     6 . . . . .
3+3                   3                   3 . . 3 . .
4+2                     4                 4 . . . 2 .
2+2+2                     2               2 . 2 . 2 .
5+1                         1   5         5 . . . . 1
3+2+1                       1 3           3 . . 2 . 1
4+1+1                   4   1             4 . . . 1 1
2+2+1+1                   2 1             2 . 2 . 1 1
3+1+1+1                     1 3           3 . . 1 1 1
2+1+1+1+1                 2 1             2 . 1 1 1 1
1+1+1+1+1+1                 1             1 1 1 1 1 1
------------------------------------------------------
.
.                   6 3 4 2 1 3 5
.     Table 2.0     . . . . 1 . .     Table 2.1
.      A182982      . . . 2 1 . .      A182983
.                   . 3 . . 1 2 .
.                   . . 2 2 1 . .
.                   . . . . 1
------------------------------------------------------
The sum of all parts > 1 on the left hand side is 34 and the sum of all parts > 1 on the right hand side is 13, so a(6) = -34 + 13 = -21. On the other hand for n = 6 the first n terms of A138880 are 0, 2, 3, 8, 10, 24 thus a(6) = 0-2+3-8+10-24 = -21.
		

Crossrefs

Programs

  • Maple
    with(combinat):
    a:= proc(n) option remember;
          n *(-1)^n *(numbpart(n-1)-numbpart(n)) +a(n-1)
        end: a(0):=0:
    seq(a(n), n=1..50); # Alois P. Heinz, Apr 04 2012
  • Mathematica
    a[n_] := Sum[(-1)^(k-1)*k*(PartitionsP[k] - PartitionsP[k-1]), {k, 1, n}]; Array[a, 50] (* Jean-François Alcover, Dec 09 2016 *)

Formula

a(n) = Sum_{k=1..n} (-1)^(k-1)*k*(p(k)-p(k-1)), where p(k) is the number of partitions of k.
a(n) = b(1)-b(2)+b(3)-b(4)+b(5)-b(6)...+-b(n), where b(n) = A138880(n).
a(n) ~ -(-1)^n * Pi * sqrt(2) * exp(Pi*sqrt(2*n/3)) / (48*sqrt(n)). - Vaclav Kotesovec, Oct 09 2018

A194804 Sum of parts that are visible in one of the three views of the shell model of partitions version "tree" with n shells.

Original entry on oeis.org

0, 1, 4, 8, 15, 23, 40, 59, 92, 137, 202, 285, 418, 577, 802, 1106, 1511, 2019, 2724, 3598, 4755, 6226, 8107, 10462, 13523, 17280, 22029, 27953, 35350, 44416, 55763, 69579, 86634, 107459, 132914, 163768, 201475, 246841, 301822, 368033, 447790, 543206
Offset: 0

Views

Author

Omar E. Pol, Jan 27 2012

Keywords

Comments

For the number of parts see A194803. For more information about the shell model see A135010 and A194805.

Examples

			Illustration of one of the three views with seven shells:
.
.        A182732 <- 6 3 4 2 1 3 5 4 7 -> A182733
.                   . . . . 1 . . . .
.                   . . . 2 1 . . . .
.      Table 2.0    . 3 . . 1 2 . . .    Table 2.1
.                   . . 2 2 1 . . 3 .
.                   . . . . 1 2 2 . .
.                           1 . . . .
.  A182742  A182982                   A182743  A182983
.  A182992  A182994                   A182993  A182995
.
The sum of parts that are visible is 1+1+1+1+1+1+1+2+2+2+2+2+2+2+3+3+3+3+4+4+5+6+7 = 59, so a(7) = 59. Using the formula we have a(7) = 7+24+28 = 59.
		

Crossrefs

Formula

a(n) = n + A138880(n-1) + A138880(n), if n >= 2.

A182980 Version "mirror" of the shell model of partitions of A135010. Triangle read by rows: row n lists the parts of the last section of the set of partitions of n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 2, 3, 5, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7, 8, 4, 4, 3, 5, 2, 6, 2, 3, 3, 2, 2, 4, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Feb 02 2011

Keywords

Comments

In n is odd then row n lists the numbers of row n of A135010. If n is even the row n lists the 1's of row n of A135010 and then row n lists the other numbers of row n of A135010 in reverse order.

Examples

			Triangle begins:
1,
1, 2,
1, 1, 3,
1, 1, 1, 4, 2, 2,
1, 1, 1, 1, 1, 2, 3, 5,
1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 2, 4, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 5, 3, 4, 7,
		

Crossrefs

A210943 Square array read by antidiagonals in which row n lists the parts of the infinite n-th zone of the shell model of partitions, in nonincreasing order.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2012

Keywords

Comments

The n-th zone of the shell model of partitions is formed by the parts of the n-th row of triangle A210941 together with infinitely many parts of size 1.

Examples

			Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
2, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
3, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
2, 2, 1, 1, 1, 1, 1, 1, 1, 1,...
4, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
3, 2, 1, 1, 1, 1, 1, 1, 1, 1,...
5, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
2, 2, 2, 1, 1, 1, 1, 1, 1, 1,...
4, 2, 1, 1, 1, 1, 1, 1, 1, 1,...
3, 3, 1, 1, 1, 1, 1, 1, 1, 1,...
6, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
3, 2, 2, 1, 1, 1, 1, 1, 1, 1,...
5, 2, 1, 1, 1, 1, 1, 1, 1, 1,...
4, 3, 1, 1, 1, 1, 1, 1, 1, 1,...
7, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
		

Crossrefs

A182716 Number of 2's in all partitions of 2n that do not contain 1 as a part.

Original entry on oeis.org

0, 1, 2, 4, 8, 15, 27, 48, 82, 137, 225, 362, 572, 892, 1370, 2078, 3117, 4624, 6791, 9885, 14263, 20416, 29007, 40921, 57345, 79864, 110565, 152211, 208435, 283982, 385048, 519695, 698346, 934477, 1245439, 1653485, 2187108, 2882686, 3786497, 4957324, 6469625
Offset: 0

Views

Author

Omar E. Pol, Dec 03 2010

Keywords

Crossrefs

Cf. A182742. Bisection of A182712.

Programs

  • Maple
    b:= proc(n,i) option remember; local r;
          if n<=0 or i<2 then 0
        elif i=2 then `if`(irem(n,2,'r')=0,r,0)
        else b(n,i-1) +b(n-i,i)
          fi
        end:
    a:= n-> b(2*n,2*n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Dec 03 2010
  • Mathematica
    b[n_, i_] := b[n, i] = Module[{q, r}, Which[n <= 0 || i<2, 0, i==2, {q, r} = QuotientRemainder[n, 2]; If[r==0, q, 0], True, b[n, i-1]+b[n-i, i]]]; a[n_] := b[2n, 2n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Dec 03 2010
Previous Showing 11-20 of 24 results. Next