cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A182798 Number of 4-colorings of the n X n X n triangular grid.

Original entry on oeis.org

4, 24, 192, 2112, 32640, 718080, 22665216, 1031276544, 67849629696, 6468240187392, 894839431299072, 179851071814434816, 52561241074964496384, 22351071118387029737472, 13837189739906569661841408
Offset: 1

Views

Author

Alois P. Heinz, Dec 02 2010

Keywords

Comments

The n X n X n triangular grid has n rows with k vertices in row k. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.

Crossrefs

Formula

a(n) = 4 * A153467(n).

Extensions

a(15) from Alois P. Heinz, Mar 11 2016

A193283 Triangle T(n,k), n>=1, 0<=k<=n*(n+1)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the n X n X n triangular grid, highest powers first.

Original entry on oeis.org

1, 0, 1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -18, 144, -672, 2016, -4031, 5368, -4584, 2272, -496, 0, 1, -30, 419, -3612, 21477, -93207, 304555, -761340, 1463473, -2152758, 2385118, -1929184, 1075936, -369824, 58976, 0
Offset: 1

Views

Author

Alois P. Heinz, Jul 20 2011

Keywords

Comments

The n X n X n triangular grid has n rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.

Examples

			4 example graphs:                           o
                                           / \
                              o           o---o
                             / \         / \ / \
                    o       o---o       o---o---o
                   / \     / \ / \     / \ / \ / \
              o   o---o   o---o---o   o---o---o---o
  n:          1     2         3             4
  Vertices:   1     3         6            10
  Edges:      0     3         9            18
The 2 X 2 X 2 triangular grid is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
  1,   0;
  1,  -3,   2,      0;
  1,  -9,  32,    -56,     48,     -16,       0;
  1, -18, 144,   -672,   2016,   -4031,    5368, ...
  1, -30, 419,  -3612,  21477,  -93207,  304555, ...
  1, -45, 965, -13115, 126720, -925528, 5303300, ...
  ...
		

Crossrefs

A178446 Number of perfect matchings in the n X n X n triangular grid, reduced by the spire vertex if n mod 4 equals 1 or 2.

Original entry on oeis.org

1, 1, 1, 2, 6, 28, 200, 2196, 37004, 957304, 38016960, 2317631400, 216893681800, 31159166587056, 6871649018572800, 2326335506123418128, 1208982377794384163088, 964503557426086478029152, 1181201363574177619007442944, 2220650888749669503773432361504, 6408743336016148761893699822360672
Offset: 0

Views

Author

Alois P. Heinz, Dec 24 2010

Keywords

Comments

The n X n X n triangular grid has n rows with i vertices in row i. Each vertex is connected to the neighbors in the same row and up to two vertices in each of the neighboring rows. The graph has A000217(n) vertices and 3*A000217(n-1) edges altogether.
In order to be able to find matchings the n X n X n triangular grid is reduced by the spire vertex (one vertex in row 1) and the incident edges if n mod 4 is in {1, 2}. The resulting graph has an even number of vertices.

Examples

			4 example graphs:                         o
                                         / \
                             o          o---o
                            / \        / \ / \
                   ( )     o---o      o---o---o
                          / \ / \    / \ / \ / \
              ( ) o---o  o---o---o  o---o---o---o
  n:           1    2        3            4
  Vertices:    0    2        6           10
  Edges:       0    1        9           18
  Matchings:   1    1        2            6
		

Crossrefs

Programs

  • Maple
    with(LinearAlgebra):
    a:= proc(n) option remember; local i, j, h0, h1, M, s, t;
          if n<2 then 1
        else s:= `if`(member(irem(n, 4), [1, 2]), 1, 0);
             M:= Matrix((n+1)*n/2 -s, shape=skewsymmetric);
             if s=1 then M[1,2]:=1 fi;
             for j from 1+s to n-1 do
               h0:= j*(j-1)/2 +1-s;
               h1:= h0+j;
               t:= 1;
               for i from 1 to j do
                 M[h1, h1+1]:= 1;
                 M[h1, h0]:= t;
                 h1:= h1+1;
                 M[h1, h0]:= t;
                 h0:= h0+1;
                 t:= -t
               od
             od;
             sqrt(Determinant(M))
          fi
        end:
    seq(a(n), n=0..15);
  • Mathematica
    a[n_] := a[n] = Module[{i, j, h0, h1, M, s, t}, If[n<2, 1, s = If[1 <= Mod[n, 4] <= 2, 1, 0]; M = Array[0&, {(n+1)n/2 - s, (n+1)n/2 - s}]; If[s == 1, M[[1, 2]] = 1]; For[j = 1+s, j <= n-1, j++, h0 = j(j-1)/2 + 1 - s; h1 = h0+j; t = 1; For[i = 1, i <= j, i++, M[[h1, h1+1]] = 1; M[[h1, h0]] = t; h1 = h1+1; M[[h1, h0]] = t; h0 = h0+1; t = -t]]; Sqrt[Det[M-Transpose[M]]]]];
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 23 2022, after Alois P. Heinz *)

A153467 1/4 of the number of 4-colorings of a planar n X n X n triangular grid.

Original entry on oeis.org

1, 6, 48, 528, 8160, 179520, 5666304, 257819136, 16962407424, 1617060046848, 223709857824768, 44962767953608704, 13140310268741124096, 5587767779596757434368, 3459297434976642415460352
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2008

Keywords

Crossrefs

4th row of A182797/4, A182798/4.

Extensions

a(14) from Alois P. Heinz, Dec 03 2010
a(15) from Alois P. Heinz, Mar 11 2016

A153468 1/5 of the number of 5-colorings of a planar n X n X n triangular grid.

Original entry on oeis.org

1, 12, 324, 19764, 2727756, 852196788, 602756140068, 965229960414132, 3499562183624643780, 28727144381588600187612, 533909545388896809071238444, 22466716989986988610061264294004, 2140465899840618529308907998923768676
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2008

Keywords

Crossrefs

5th row of A182797/5.

Extensions

a(10)-a(11) from Alois P. Heinz, Dec 03 2010
a(12)-a(13) from Alois P. Heinz, Jul 21 2011

A153469 1/6 of the number of 6-colorings of a planar n X n X n triangular grid.

Original entry on oeis.org

1, 20, 1280, 262400, 172336640, 362631649280, 2444725581455360, 52804515715254149120, 3654168284344820145766400, 810181920328696211112009728000, 575510260400583306243122436913233920
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2008

Keywords

Crossrefs

6th row of A182797/6.

Extensions

a(10)-a(11) from Alois P. Heinz, Dec 03 2010

A153470 1/7 of the number of 7-colorings of a planar n X n X n triangular grid.

Original entry on oeis.org

1, 30, 3750, 1953750, 4242798750, 38404604583750, 1448977637979903750, 227870224522898915943750, 149369176223578379939728893750, 408114381491174443782294469248048750, 4647830909678374872940213803359098309308750
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2008

Keywords

Crossrefs

7th row of A182797/7.

Extensions

a(8)-a(11) from Alois P. Heinz, Dec 03 2010

A153471 1/8 of the number of 8-colorings of a planar n X n X n triangular grid.

Original entry on oeis.org

1, 42, 9072, 10078992, 57596549472, 1692939438332352, 255948135446478408192, 199034383110302504406200832, 796104049107763839322466439293952, 16378613975511111709055661675911519311872
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2008

Keywords

Crossrefs

8th row of A182797/8.

Extensions

a(8)-a(10) from Alois P. Heinz, Dec 03 2010

A153472 1/9 of the number of 9-colorings of a planar n X n X n triangular grid.

Original entry on oeis.org

1, 56, 19208, 40356008, 519359253560, 40941262367510120, 19769162164304264642504, 58472138404795144043227508456, 1059359506545823729966428034297457864, 117563210619769003021098235186555283816605208
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2008

Keywords

Crossrefs

9th row of A182797/9.

Extensions

a(8)-a(10) from Alois P. Heinz, Dec 03 2010

A153473 1/10 of the number of 10-colorings of a planar n X n X n triangular grid.

Original entry on oeis.org

1, 72, 36864, 134221824, 3475323150336, 639909625024217088, 837902493778820578541568, 7802247352741440019609885212672, 516651074772841413937762497933280542720, 243291172226183994424302405726749174968092721152
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2008

Keywords

Crossrefs

10th row of A182797/10.

Extensions

a(7)-a(10) from Alois P. Heinz, Dec 03 2010
Previous Showing 11-20 of 22 results. Next