A182798
Number of 4-colorings of the n X n X n triangular grid.
Original entry on oeis.org
4, 24, 192, 2112, 32640, 718080, 22665216, 1031276544, 67849629696, 6468240187392, 894839431299072, 179851071814434816, 52561241074964496384, 22351071118387029737472, 13837189739906569661841408
Offset: 1
A193283
Triangle T(n,k), n>=1, 0<=k<=n*(n+1)/2, read by rows: row n gives the coefficients of the chromatic polynomial of the n X n X n triangular grid, highest powers first.
Original entry on oeis.org
1, 0, 1, -3, 2, 0, 1, -9, 32, -56, 48, -16, 0, 1, -18, 144, -672, 2016, -4031, 5368, -4584, 2272, -496, 0, 1, -30, 419, -3612, 21477, -93207, 304555, -761340, 1463473, -2152758, 2385118, -1929184, 1075936, -369824, 58976, 0
Offset: 1
4 example graphs: o
/ \
o o---o
/ \ / \ / \
o o---o o---o---o
/ \ / \ / \ / \ / \ / \
o o---o o---o---o o---o---o---o
n: 1 2 3 4
Vertices: 1 3 6 10
Edges: 0 3 9 18
The 2 X 2 X 2 triangular grid is equal to the cycle graph C_3 with chromatic polynomial q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1, 0;
1, -3, 2, 0;
1, -9, 32, -56, 48, -16, 0;
1, -18, 144, -672, 2016, -4031, 5368, ...
1, -30, 419, -3612, 21477, -93207, 304555, ...
1, -45, 965, -13115, 126720, -925528, 5303300, ...
...
A178446
Number of perfect matchings in the n X n X n triangular grid, reduced by the spire vertex if n mod 4 equals 1 or 2.
Original entry on oeis.org
1, 1, 1, 2, 6, 28, 200, 2196, 37004, 957304, 38016960, 2317631400, 216893681800, 31159166587056, 6871649018572800, 2326335506123418128, 1208982377794384163088, 964503557426086478029152, 1181201363574177619007442944, 2220650888749669503773432361504, 6408743336016148761893699822360672
Offset: 0
4 example graphs: o
/ \
o o---o
/ \ / \ / \
( ) o---o o---o---o
/ \ / \ / \ / \ / \
( ) o---o o---o---o o---o---o---o
n: 1 2 3 4
Vertices: 0 2 6 10
Edges: 0 1 9 18
Matchings: 1 1 2 6
-
with(LinearAlgebra):
a:= proc(n) option remember; local i, j, h0, h1, M, s, t;
if n<2 then 1
else s:= `if`(member(irem(n, 4), [1, 2]), 1, 0);
M:= Matrix((n+1)*n/2 -s, shape=skewsymmetric);
if s=1 then M[1,2]:=1 fi;
for j from 1+s to n-1 do
h0:= j*(j-1)/2 +1-s;
h1:= h0+j;
t:= 1;
for i from 1 to j do
M[h1, h1+1]:= 1;
M[h1, h0]:= t;
h1:= h1+1;
M[h1, h0]:= t;
h0:= h0+1;
t:= -t
od
od;
sqrt(Determinant(M))
fi
end:
seq(a(n), n=0..15);
-
a[n_] := a[n] = Module[{i, j, h0, h1, M, s, t}, If[n<2, 1, s = If[1 <= Mod[n, 4] <= 2, 1, 0]; M = Array[0&, {(n+1)n/2 - s, (n+1)n/2 - s}]; If[s == 1, M[[1, 2]] = 1]; For[j = 1+s, j <= n-1, j++, h0 = j(j-1)/2 + 1 - s; h1 = h0+j; t = 1; For[i = 1, i <= j, i++, M[[h1, h1+1]] = 1; M[[h1, h0]] = t; h1 = h1+1; M[[h1, h0]] = t; h0 = h0+1; t = -t]]; Sqrt[Det[M-Transpose[M]]]]];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Sep 23 2022, after Alois P. Heinz *)
A153467
1/4 of the number of 4-colorings of a planar n X n X n triangular grid.
Original entry on oeis.org
1, 6, 48, 528, 8160, 179520, 5666304, 257819136, 16962407424, 1617060046848, 223709857824768, 44962767953608704, 13140310268741124096, 5587767779596757434368, 3459297434976642415460352
Offset: 1
A153468
1/5 of the number of 5-colorings of a planar n X n X n triangular grid.
Original entry on oeis.org
1, 12, 324, 19764, 2727756, 852196788, 602756140068, 965229960414132, 3499562183624643780, 28727144381588600187612, 533909545388896809071238444, 22466716989986988610061264294004, 2140465899840618529308907998923768676
Offset: 1
A153469
1/6 of the number of 6-colorings of a planar n X n X n triangular grid.
Original entry on oeis.org
1, 20, 1280, 262400, 172336640, 362631649280, 2444725581455360, 52804515715254149120, 3654168284344820145766400, 810181920328696211112009728000, 575510260400583306243122436913233920
Offset: 1
A153470
1/7 of the number of 7-colorings of a planar n X n X n triangular grid.
Original entry on oeis.org
1, 30, 3750, 1953750, 4242798750, 38404604583750, 1448977637979903750, 227870224522898915943750, 149369176223578379939728893750, 408114381491174443782294469248048750, 4647830909678374872940213803359098309308750
Offset: 1
A153471
1/8 of the number of 8-colorings of a planar n X n X n triangular grid.
Original entry on oeis.org
1, 42, 9072, 10078992, 57596549472, 1692939438332352, 255948135446478408192, 199034383110302504406200832, 796104049107763839322466439293952, 16378613975511111709055661675911519311872
Offset: 1
A153472
1/9 of the number of 9-colorings of a planar n X n X n triangular grid.
Original entry on oeis.org
1, 56, 19208, 40356008, 519359253560, 40941262367510120, 19769162164304264642504, 58472138404795144043227508456, 1059359506545823729966428034297457864, 117563210619769003021098235186555283816605208
Offset: 1
A153473
1/10 of the number of 10-colorings of a planar n X n X n triangular grid.
Original entry on oeis.org
1, 72, 36864, 134221824, 3475323150336, 639909625024217088, 837902493778820578541568, 7802247352741440019609885212672, 516651074772841413937762497933280542720, 243291172226183994424302405726749174968092721152
Offset: 1
Comments