A183564
Number of partitions of n containing a clique of size 7.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 17, 25, 30, 42, 53, 72, 87, 117, 144, 188, 231, 298, 365, 466, 567, 714, 871, 1085, 1316, 1630, 1972, 2422, 2918, 3562, 4280, 5195, 6219, 7507, 8966, 10773, 12815, 15335, 18196, 21680, 25653, 30453
Offset: 7
a(13) = 4, because 4 partitions of 13 contain (at least) one clique of size 7: [1,1,1,1,1,1,1,2,2,2], [1,1,1,1,1,1,1,3,3], [1,1,1,1,1,1,1,2,4], [1,1,1,1,1,1,1,6].
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=7, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[2])(b(n, n)):
seq(a(n), n=7..55);
-
max = 55; f = (1 - Product[1 - x^(7j) + x^(8j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 7] (* Jean-François Alcover, Oct 01 2014 *)
A183565
Number of partitions of n containing a clique of size 8.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 8, 9, 13, 16, 24, 28, 40, 49, 66, 82, 110, 132, 175, 214, 274, 336, 428, 520, 655, 798, 990, 1203, 1486, 1793, 2200, 2653, 3227, 3880, 4701, 5622, 6779, 8092, 9701, 11546, 13793, 16355, 19466, 23029, 27290, 32199, 38048, 44752, 52719
Offset: 8
a(12) = 2, because 2 partitions of 12 contain (at least) one clique of size 8: [1,1,1,1,1,1,1,1,2,2], [1,1,1,1,1,1,1,1,4].
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=8, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[2])(b(n, n)):
seq(a(n), n=8..60);
-
max = 60; f = (1 - Product[1 - x^(8j) + x^(9j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 8] (* Jean-François Alcover, Oct 01 2014 *)
c8[n_]:=If[MemberQ[Tally[n][[All,2]],8],1,0]; Table[Total[c8/@ IntegerPartitions[ x]],{x,8,60}] (* Harvey P. Dale, Aug 12 2018 *)
A183566
Number of partitions of n containing a clique of size 9.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 9, 13, 15, 23, 27, 38, 47, 63, 77, 103, 126, 165, 201, 258, 315, 401, 487, 611, 743, 924, 1118, 1382, 1664, 2041, 2455, 2989, 3583, 4340, 5185, 6248, 7446, 8930, 10604, 12668, 15002, 17848, 21083, 24987, 29435, 34776, 40860
Offset: 9
a(12) = 1, because 1 partition of 12 contains (at least) one clique of size 9: [1,1,1,1,1,1,1,1,1,3].
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=9, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[2])(b(n, n)):
seq(a(n), n=9..60);
-
max=60;f=(1-Product[1-x^(9j)+x^(10j),{j,1,max}])/Product[1-x^j,{j,1,max}]; s=Series[f,{x,0,max}]; Drop[CoefficientList[s,x],9] (* Jean-François Alcover, Oct 01 2014 *)
A183567
Number of partitions of n containing a clique of size 10.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 13, 15, 22, 26, 37, 45, 61, 74, 99, 120, 157, 192, 247, 299, 381, 462, 580, 703, 874, 1055, 1303, 1569, 1921, 2309, 2808, 3363, 4070, 4859, 5848, 6964, 8342, 9903, 11817, 13988, 16623, 19626, 23240, 27363, 32297
Offset: 10
a(14) = 2, because 2 partitions of 14 contain (at least) one clique of size 10: [1,1,1,1,1,1,1,1,1,1,2,2], [1,1,1,1,1,1,1,1,1,1,4].
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=10, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[2])(b(n, n)):
seq(a(n), n=10..60);
-
max = 60; f = (1 - Product[1 - x^(10j) + x^(11j), {j, 1, max}])/Product[1 - x^j, {j, 1, max}]; s = Series[f, {x, 0, max}]; Drop[CoefficientList[s, x], 10] (* Jean-François Alcover, Oct 01 2014 *)
Table[Length[Select[IntegerPartitions[n],MemberQ[Length/@Split[#],10]&]],{n,10,60}] (* Harvey P. Dale, Oct 02 2021 *)
A184639
Number of partitions of n having no parts with multiplicity 4.
Original entry on oeis.org
1, 1, 2, 3, 4, 7, 10, 14, 19, 27, 37, 50, 67, 88, 115, 153, 196, 253, 324, 412, 524, 661, 828, 1036, 1290, 1603, 1980, 2443, 2997, 3671, 4487, 5460, 6631, 8034, 9703, 11703, 14075, 16890, 20226, 24175, 28838, 34332, 40801, 48394, 57307, 67765, 79974
Offset: 0
a(4) = 4, because 4 partitions of 4 have no parts with multiplicity 4: [1,1,2], [2,2], [1,3], [4].
Cf.
A000041,
A183561,
A183568,
A007690,
A116645,
A118807,
A184640,
A184641,
A184642,
A184643,
A184644,
A184645.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=4, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[l, If[j == 4, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A184640
Number of partitions of n having no parts with multiplicity 5.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 11, 14, 21, 28, 39, 51, 72, 92, 124, 160, 210, 266, 349, 438, 562, 704, 892, 1107, 1395, 1720, 2141, 2631, 3249, 3965, 4873, 5916, 7216, 8730, 10585, 12742, 15387, 18443, 22151, 26466, 31646, 37659, 44873, 53212, 63149, 74666, 88295
Offset: 0
a(5) = 6, because 6 partitions of 5 have no parts with multiplicity 5: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
Cf.
A000041,
A183562,
A183568,
A007690,
A116645,
A118807,
A184639,
A184641,
A184642,
A184643,
A184644,
A184645.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=5, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 5, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A184641
Number of partitions of n having no parts with multiplicity 6.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 15, 21, 29, 40, 54, 72, 96, 127, 166, 216, 279, 358, 457, 580, 735, 924, 1159, 1446, 1799, 2228, 2752, 3388, 4158, 5087, 6207, 7551, 9165, 11093, 13401, 16144, 19412, 23286, 27882, 33310, 39727, 47289, 56191, 66647, 78923, 93299
Offset: 0
a(6) = 10, because 10 partitions of 6 have no parts with multiplicity 6: [1,1,1,1,2], [1,1,2,2], [2,2,2], [1,1,1,3], [1,2,3], [3,3], [1,1,4], [2,4], [1,5], [6].
Cf.
A000041,
A183563,
A183568,
A007690,
A116645,
A118807,
A184639,
A184640,
A184642,
A184643,
A184644,
A184645.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=6, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 6, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A184642
Number of partitions of n having no parts with multiplicity 7.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 14, 22, 29, 41, 54, 75, 97, 130, 168, 222, 283, 368, 465, 597, 750, 949, 1183, 1488, 1841, 2292, 2822, 3487, 4267, 5239, 6376, 7782, 9429, 11439, 13798, 16661, 20007, 24043, 28763, 34420, 41021, 48894, 58066, 68956, 81627, 96592
Offset: 0
a(7) = 14, because 14 partitions of 7 have no parts with multiplicity 7: [1,1,1,1,1,2], [1,1,1,2,2], [1,2,2,2], [1,1,1,1,3], [1,1,2,3], [2,2,3], [1,3,3], [1,1,1,4], [1,2,4], [3,4], [1,1,5], [2,5], [1,6], [7].
Cf.
A000041,
A183564,
A183568,
A007690,
A116645,
A118807,
A184639,
A184640,
A184641,
A184643,
A184644,
A184645.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=7, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 7, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n],?(FreeQ[Length/@Split[#],7]&)],{n,0,50}] (* _Harvey P. Dale, Sep 21 2024 *)
A184643
Number of partitions of n having no parts with multiplicity 8.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 21, 30, 41, 55, 75, 99, 131, 172, 223, 288, 372, 474, 603, 764, 962, 1206, 1509, 1876, 2326, 2878, 3543, 4351, 5330, 6506, 7921, 9623, 11655, 14085, 16987, 20434, 24529, 29392, 35138, 41930, 49947, 59381, 70474, 83512, 98779
Offset: 0
Cf.
A000041,
A183565,
A183568,
A007690,
A116645,
A118807,
A184639,
A184640,
A184641,
A184642,
A184644,
A184645.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=8, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 8, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A184644
Number of partitions of n having no parts with multiplicity 9.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 42, 55, 76, 99, 133, 172, 227, 290, 376, 477, 612, 769, 975, 1217, 1528, 1895, 2359, 2907, 3592, 4400, 5403, 6584, 8034, 9742, 11823, 14272, 17234, 20713, 24897, 29803, 35674, 42542, 50719, 60272, 71592, 84794
Offset: 0
Cf.
A000041,
A183566,
A183568,
A007690,
A116645,
A118807,
A184639,
A184640,
A184641,
A184642,
A184643,
A184645.
-
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=9, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> (l-> l[1]-l[2])(b(n, n)):
seq(a(n), n=0..50);
-
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 9, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
a[n_] := b[n, n][[1]] - b[n, n][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Comments