cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A184940 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
Offset: 5

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: A184941 (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), this sequence (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

A184941 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth at least g.

Original entry on oeis.org

1, 1, 2, 6, 1, 16, 0, 59, 2, 265, 2, 1544, 12, 10778, 31, 88168, 220, 805491, 1606, 8037418, 16828, 86221634, 193900, 985870522, 2452818, 11946487647, 32670330, 1, 152808063181, 456028474, 2, 2056692014474, 6636066099, 8, 28566273166527, 100135577747, 131
Offset: 5

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
6, 1;
16, 0;
59, 2;
265, 2;
1544, 12;
10778, 31;
88168, 220;
805491, 1606;
8037418, 16828;
86221634, 193900;
985870522, 2452818;
11946487647, 32670330, 1;
152808063181, 456028474, 2;
2056692014474, 6636066099, 8;
28566273166527, 100135577747, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184940 (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), this sequence (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).

A184974 Number of connected 7-regular simple graphs on 2n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 8, 741, 2887493
Offset: 0

Views

Author

Jason Kimberley, Feb 28 2011

Keywords

Examples

			a(0)=0 because even though the null graph (on zero vertices) is vacuously 7-regular and connected, since it is acyclic, it has infinite girth.
The a(7)=1 graph is the complete bipartite graph K_{7,7}.
		

Crossrefs

Connected k-regular simple graphs with girth exactly 4: A006924 (k=3), A184944 (k=4), A184954 (k=5), A184964 (k=6), this sequence (k=7).
Connected 7-regular simple graphs with girth at least g: A014377 (g=3), A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: A184973 (g=3), this sequence (g=4).

Formula

a(n) = A186714(n,5) - A186715(n,5).

A185044 Number of disconnected 4-regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 2, 15, 35, 247, 1692, 17409, 197924, 2492824, 33117880, 461597957, 6709514218, 101153412903, 1597440868898
Offset: 0

Views

Author

Jason Kimberley, Nov 04 2011

Keywords

Comments

Only one component need have girth exactly four; the other components need only have girth at least four.
First differs from A185244 at n = 38, the smallest n where A185245 is nonzero.

Crossrefs

Disconnected 4-regular simple graphs with girth exactly g: A185043 (g=3), this sequence (g=4).
Disconnected k-regular simple graphs with girth exactly 4: A185034 (k=3), this sequence (k=4).

Formula

a(n) = A185244(n) - A185245(n).
a(n) = A185144(n) - A184944(n).

Extensions

a(31) corrected by the author, propagated from A185244, Jan 05 2013

A184946 Number of connected 4-regular simple graphs on n vertices with girth exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 19, 0, 1272, 25, 494031, 13504
Offset: 0

Views

Author

Jason Kimberley, Feb 27 2011

Keywords

Comments

First differs from A058348 at n = A054760(4,7) = 67.

Crossrefs

Connected 4-regular simple graphs with girth at least g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184943 (g=3), A184944 (g=4), A184945 (g=5), this sequence (g=6).
Previous Showing 11-15 of 15 results.