A006820
Number of connected regular simple graphs of degree 4 (or quartic graphs) with n nodes.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 59, 265, 1544, 10778, 88168, 805491, 8037418, 86221634, 985870522, 11946487647, 152808063181, 2056692014474, 29051272833609, 429668180677439, 6640165204855036, 107026584471569605, 1796101588825595008, 31333997930603283531, 567437240683788292989
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Wayne Barrett, Shaun Fallat, Veronika Furst, Shahla Nasserasr, Brendan Rooney, and Michael Tait, Regular Graphs of Degree at most Four that Allow Two Distinct Eigenvalues, arXiv:2305.10562 [math.CO], 2023. See p. 7.
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
- M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146. [_Jason Kimberley_, Nov 24 2009]
- M. Meringer, GenReg, Generation of regular graphs, program.
- Markus Meringer, H. James Cleaves, Stephen J. Freeland, Beyond Terrestrial Biology: Charting the Chemical Universe of α-Amino Acid Structures, Journal of Chemical Information and Modeling, 53.11 (2013), pp. 2851-2862.
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Quartic Graph
- Eric Weisstein's World of Mathematics, Regular Graph
- Zhipeng Xu, Xiaolong Huang, Fabian Jimenez, and Yuefan Deng, A new record of enumeration of regular graphs by parallel processing, arXiv:1907.12455 [cs.DM], 2019.
4-regular simple graphs: this sequence (connected),
A033483 (disconnected),
A033301 (not necessarily connected).
Connected 4-regular simple graphs with girth at least g: this sequence (g=3),
A033886 (g=4),
A058343 (g=5),
A058348 (g=6).
Connected 4-regular graphs: this sequence (simple),
A085549 (multigraphs with loops allowed),
A129417 (multigraphs with loops verboten). (End)
a(19)-a(22) were appended by
Jason Kimberley on Sep 04 2009, Nov 24 2009, Mar 27 2010, and Mar 18 2011, from running M. Meringer's GENREG for 3.4, 44, and 403 processor days, and 15.5 processor years, at U. Ncle.
A198303
Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 1, 3, 2, 13, 5, 1, 63, 20, 2, 399, 101, 8, 1, 3268, 743, 48, 1, 33496, 7350, 450, 5, 412943, 91763, 5751, 32, 5883727, 1344782, 90553, 385, 94159721, 22160335, 1612905, 7573, 1, 1661723296, 401278984, 31297357, 181224, 3, 31954666517
Offset: 2
1;
1, 1;
3, 2;
13, 5, 1;
63, 20, 2;
399, 101, 8, 1;
3268, 743, 48, 1;
33496, 7350, 450, 5;
412943, 91763, 5751, 32;
5883727, 1344782, 90553, 385;
94159721, 22160335, 1612905, 7573, 1;
1661723296, 401278984, 31297357, 181224, 3;
31954666517, 7885687604, 652159389, 4624480, 21;
663988090257, 166870266608, 14499780660, 122089998, 545;
14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
The sum of the n-th row of this sequence is
A002851(n).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: this sequence (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184980
Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105934, 1
Offset: 9
1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105934, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
Connected 8-regular simple graphs with girth at least g:
A184981 (triangle); chosen g:
A014378 (g=3),
A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7), this sequence (k=8).
A184941
Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth at least g.
Original entry on oeis.org
1, 1, 2, 6, 1, 16, 0, 59, 2, 265, 2, 1544, 12, 10778, 31, 88168, 220, 805491, 1606, 8037418, 16828, 86221634, 193900, 985870522, 2452818, 11946487647, 32670330, 1, 152808063181, 456028474, 2, 2056692014474, 6636066099, 8, 28566273166527, 100135577747, 131
Offset: 5
1;
1;
2;
6, 1;
16, 0;
59, 2;
265, 2;
1544, 12;
10778, 31;
88168, 220;
805491, 1606;
8037418, 16828;
86221634, 193900;
985870522, 2452818;
11946487647, 32670330, 1;
152808063181, 456028474, 2;
2056692014474, 6636066099, 8;
28566273166527, 100135577747, 131;
Connected 4-regular simple graphs with girth at least g: this sequence (triangle); chosen g:
A006820 (g=3),
A033886 (g=4),
A058343 (g=5),
A058348 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g:
A185131 (k=3), this sequence (k=4),
A184951 (k=5),
A184961 (k=6),
A184971 (k=7),
A184981 (k=8).
A184950
Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 3, 59, 1, 7847, 1, 3459376, 7, 2585136287, 388, 2807104844073, 406824
Offset: 3
1;
3;
59, 1;
7847, 1;
3459376, 7;
2585136287, 388;
2807104844073, 406824;
?, 1125022325;
?, 3813549359274;
Connected 5-regular simple graphs with girth at least g:
A184951 (triangle); chosen g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184953 (g=3),
A184954 (g=4),
A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4), this sequence (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184960
Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7
Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
Connected 6-regular simple graphs with girth at least g:
A184961 (triangle); chosen g:
A006822 (g=3),
A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184963 (g=3),
A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5), this sequence (k=6),
A184970 (k=7),
A184980 (k=8).
After approximately 390 processor days of computation with genreg, C(41,5)=0.
A184970
Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 5, 1547, 21609300, 1, 733351105933, 1
Offset: 4
1;
5;
1547;
21609300, 1;
733351105933, 1;
?, 8;
?, 741;
?, 2887493;
Connected 7-regular simple graphs with girth at least g:
A184971 (triangle); chosen g:
A014377 (g=3),
A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184973 (g=3),
A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6), this sequence (k=7),
A184980 (k=8).
Showing 1-7 of 7 results.
Comments