A198303
Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 1, 3, 2, 13, 5, 1, 63, 20, 2, 399, 101, 8, 1, 3268, 743, 48, 1, 33496, 7350, 450, 5, 412943, 91763, 5751, 32, 5883727, 1344782, 90553, 385, 94159721, 22160335, 1612905, 7573, 1, 1661723296, 401278984, 31297357, 181224, 3, 31954666517
Offset: 2
1;
1, 1;
3, 2;
13, 5, 1;
63, 20, 2;
399, 101, 8, 1;
3268, 743, 48, 1;
33496, 7350, 450, 5;
412943, 91763, 5751, 32;
5883727, 1344782, 90553, 385;
94159721, 22160335, 1612905, 7573, 1;
1661723296, 401278984, 31297357, 181224, 3;
31954666517, 7885687604, 652159389, 4624480, 21;
663988090257, 166870266608, 14499780660, 122089998, 545;
14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
The sum of the n-th row of this sequence is
A002851(n).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: this sequence (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184940
Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
Offset: 5
1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184943 (g=3),
A184944 (g=4),
A184945 (g=5),
A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3), this sequence (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184980
Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105934, 1
Offset: 9
1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105934, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
Connected 8-regular simple graphs with girth at least g:
A184981 (triangle); chosen g:
A014378 (g=3),
A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7), this sequence (k=8).
A184950
Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 3, 59, 1, 7847, 1, 3459376, 7, 2585136287, 388, 2807104844073, 406824
Offset: 3
1;
3;
59, 1;
7847, 1;
3459376, 7;
2585136287, 388;
2807104844073, 406824;
?, 1125022325;
?, 3813549359274;
Connected 5-regular simple graphs with girth at least g:
A184951 (triangle); chosen g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184953 (g=3),
A184954 (g=4),
A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4), this sequence (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184960
Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7
Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
Connected 6-regular simple graphs with girth at least g:
A184961 (triangle); chosen g:
A006822 (g=3),
A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184963 (g=3),
A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5), this sequence (k=6),
A184970 (k=7),
A184980 (k=8).
After approximately 390 processor days of computation with genreg, C(41,5)=0.
A184971
Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth at least g.
Original entry on oeis.org
1, 5, 1547, 21609301, 1, 733351105934, 1
Offset: 4
1;
5;
1547;
21609301, 1;
733351105934, 1;
?, 8;
?, 741;
?, 2887493;
Connected 7-regular simple graphs with girth at least g: this sequence (triangle); chosen g:
A014377 (g=3),
A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g:
A184970 (triangle); chosen g:
A184973 (g=3),
A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g:
A185131 (k=3),
A184941 (k=4),
A184951 (k=5),
A184961 (k=6), this sequence (k=7),
A184981 (k=8).
Showing 1-6 of 6 results.
Comments