cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A198303 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 1, 3, 2, 13, 5, 1, 63, 20, 2, 399, 101, 8, 1, 3268, 743, 48, 1, 33496, 7350, 450, 5, 412943, 91763, 5751, 32, 5883727, 1344782, 90553, 385, 94159721, 22160335, 1612905, 7573, 1, 1661723296, 401278984, 31297357, 181224, 3, 31954666517
Offset: 2

Views

Author

Jason Kimberley, Nov 16 2011

Keywords

Comments

The first column is for girth exactly 3. The row length is incremented to g-2 when 2n reaches A000066(g).

Examples

			1;
1, 1;
3, 2;
13, 5, 1;
63, 20, 2;
399, 101, 8, 1;
3268, 743, 48, 1;
33496, 7350, 450, 5;
412943, 91763, 5751, 32;
5883727, 1344782, 90553, 385;
94159721, 22160335, 1612905, 7573, 1;
1661723296, 401278984, 31297357, 181224, 3;
31954666517, 7885687604, 652159389, 4624480, 21;
663988090257, 166870266608, 14499780660, 122089998, 545;
14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
		

Crossrefs

The sum of the n-th row of this sequence is A002851(n).
Connected 3-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: this sequence (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

A184940 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
Offset: 5

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: A184941 (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), this sequence (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

A184980 Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105934, 1
Offset: 9

Views

Author

Jason Kimberley, Jan 19 2012

Keywords

Comments

The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A054760(8,g).

Examples

			1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105934, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
		

Crossrefs

Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), this sequence (k=8).

A184950 Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.

Original entry on oeis.org

1, 3, 59, 1, 7847, 1, 3459376, 7, 2585136287, 388, 2807104844073, 406824
Offset: 3

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4. The row length is incremented to g-2 when 2n reaches A054760(5,g).

Examples

			1;
3;
59, 1;
7847, 1;
3459376, 7;
2585136287, 388;
2807104844073, 406824;
?, 1125022325;
?, 3813549359274;
		

Crossrefs

Connected 5-regular simple graphs with girth at least g: A184951 (triangle); chosen g: A006821 (g=3), A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), this sequence (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

A184960 Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7

Views

Author

Jason Kimberley, Feb 24 2011

Keywords

Comments

The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3. The row length is incremented to g-2 when n reaches A054760(6,g).

Examples

			Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
		

Crossrefs

Connected 6-regular simple graphs with girth at least g: A184961 (triangle); chosen g: A006822 (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184963 (g=3), A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), this sequence (k=6), A184970 (k=7), A184980 (k=8).

Extensions

After approximately 390 processor days of computation with genreg, C(41,5)=0.

A184971 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 5, 1547, 21609301, 1, 733351105934, 1
Offset: 4

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g-2 when 2n reaches A054760(7,g).

Examples

			1;
5;
1547;
21609301, 1;
733351105934, 1;
?, 8;
?, 741;
?, 2887493;
		

Crossrefs

Connected 7-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A014377 (g=3), A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: A184970 (triangle); chosen g: A184973 (g=3), A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), this sequence (k=7), A184981 (k=8).
Showing 1-6 of 6 results.