A014378
Number of connected regular graphs of degree 8 with n nodes.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 423187422492342, 281341168330848873, 214755319657939505395, 187549729101764460261498, 186685399408147545744203815, 210977245260028917322933154987
Offset: 0
a(0)=1 because the null graph (with no vertices) is vacuously 8-regular and connected.
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
8-regular simple graphs: this sequence (connected),
A165878 (disconnected),
A180260 (not necessarily connected).
Connected regular simple graphs
A005177 (any degree),
A068934 (triangular array), specified degree k:
A002851 (k=3),
A006820 (k=4),
A006821 (k=5),
A006822 (k=6),
A014377 (k=7), this sequence (k=8),
A014381 (k=9),
A014382 (k=10),
A014384 (k=11).
Connected 8-regular simple graphs with girth at least g:
A184981 (triangle); chosen g:
A014378 (g=3),
A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g:
A184980 (triangle); chosen g:
A184983 (g=3). (End)
A198303
Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 1, 3, 2, 13, 5, 1, 63, 20, 2, 399, 101, 8, 1, 3268, 743, 48, 1, 33496, 7350, 450, 5, 412943, 91763, 5751, 32, 5883727, 1344782, 90553, 385, 94159721, 22160335, 1612905, 7573, 1, 1661723296, 401278984, 31297357, 181224, 3, 31954666517
Offset: 2
1;
1, 1;
3, 2;
13, 5, 1;
63, 20, 2;
399, 101, 8, 1;
3268, 743, 48, 1;
33496, 7350, 450, 5;
412943, 91763, 5751, 32;
5883727, 1344782, 90553, 385;
94159721, 22160335, 1612905, 7573, 1;
1661723296, 401278984, 31297357, 181224, 3;
31954666517, 7885687604, 652159389, 4624480, 21;
663988090257, 166870266608, 14499780660, 122089998, 545;
14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
The sum of the n-th row of this sequence is
A002851(n).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: this sequence (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A181154
Number of connected 8-regular simple graphs on n vertices with girth at least 4.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 1
Offset: 0
Jason Kimberley, week to Jan 31 2011
The a( 0)=1 null graph is vacuously 8-regular and connected; since it is acyclic then it has infinite girth.
The a(16)=1 graph is the complete bipartite graph K_{8,8}.
The a(21)=1 graph has girth 4, automorphism group of order 829440, and the following adjacency lists:
01 : 02 03 04 05 06 07 08 09
02 : 01 10 11 12 13 14 15 16
03 : 01 10 11 12 13 14 15 16
04 : 01 10 11 12 13 14 15 16
05 : 01 10 11 12 13 14 15 16
06 : 01 10 11 12 17 18 19 20
07 : 01 10 11 13 17 18 19 20
08 : 01 10 12 13 17 18 19 20
09 : 01 11 12 13 17 18 19 20
10 : 02 03 04 05 06 07 08 21
11 : 02 03 04 05 06 07 09 21
12 : 02 03 04 05 06 08 09 21
13 : 02 03 04 05 07 08 09 21
14 : 02 03 04 05 17 18 19 20
15 : 02 03 04 05 17 18 19 20
16 : 02 03 04 05 17 18 19 20
17 : 06 07 08 09 14 15 16 21
18 : 06 07 08 09 14 15 16 21
19 : 06 07 08 09 14 15 16 21
20 : 06 07 08 09 14 15 16 21
21 : 10 11 12 13 17 18 19 20
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.
8-regular simple graphs with girth at least 4: this sequence (connected),
A185284 (disconnected),
A185384 (not necessarily connected).
Connected 8-regular simple graphs with girth at least g:
A184981 (triangle); chosen g:
A014378 (g=3), this sequence (g=4).
Connected 8-regular simple graphs with girth exactly g:
A184980 (triangle); chosen g:
A184983 (g=3).
A184981
Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth at least g.
Original entry on oeis.org
1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 1
Offset: 9
1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105935, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
Connected 8-regular simple graphs with girth at least g: this sequence (triangle); chosen g:
A014378 (g=3),
A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g:
A184980 (triangle); chosen g:
A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g:
A185131 (k=3),
A184941 (k=4),
A184951 (k=5),
A184961 (k=6),
A184971 (k=7), this sequence (k=8),
A184991 (k=9).
A184940
Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
Offset: 5
1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184943 (g=3),
A184944 (g=4),
A184945 (g=5),
A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3), this sequence (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184950
Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 3, 59, 1, 7847, 1, 3459376, 7, 2585136287, 388, 2807104844073, 406824
Offset: 3
1;
3;
59, 1;
7847, 1;
3459376, 7;
2585136287, 388;
2807104844073, 406824;
?, 1125022325;
?, 3813549359274;
Connected 5-regular simple graphs with girth at least g:
A184951 (triangle); chosen g:
A006821 (g=3),
A058275 (g=4).
Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184953 (g=3),
A184954 (g=4),
A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4), this sequence (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A184960
Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 4, 21, 266, 7848, 1, 367860, 0, 21609299, 1, 1470293674, 1, 113314233799, 9, 9799685588930, 6
Offset: 7
Triangle begins:
1;
1;
4;
21;
266;
7848, 1;
367860, 0;
21609299, 1;
1470293674, 1;
113314233799, 9;
9799685588930, 6;
?, 267;
?, 3727;
?, 483012;
?, 69823723;
?, 14836130862;
The C(40,5)=1 (see the a-file) graph, the unique (6,5)-cage, is the complement of a Petersen graph inside the Hoffman-Singleton graph [from Brouwer link].
The first known of C(42,5)>=1 graph(s) has automorphism group of order 5040 and these adjacency lists:
1 : 2 3 4 5 6 7
2 : 1 8 9 10 11 12
3 : 1 13 14 15 16 17
4 : 1 18 19 20 21 22
5 : 1 23 24 25 26 27
6 : 1 28 29 30 31 32
7 : 1 33 34 35 36 37
8 : 2 13 18 23 28 38
9 : 2 14 19 24 33 39
10 : 2 15 20 29 34 40
11 : 2 16 25 30 35 41
12 : 2 21 26 31 36 42
13 : 3 8 21 27 34 41
14 : 3 9 26 28 37 40
15 : 3 10 22 25 31 39
16 : 3 11 19 32 36 38
17 : 3 20 23 30 33 42
18 : 4 8 25 32 33 40
19 : 4 9 16 27 29 42
20 : 4 10 17 26 35 38
21 : 4 12 13 30 37 39
22 : 4 15 24 28 36 41
23 : 5 8 17 29 36 39
24 : 5 9 22 30 34 38
25 : 5 11 15 18 37 42
26 : 5 12 14 20 32 41
27 : 5 13 19 31 35 40
28 : 6 8 14 22 35 42
29 : 6 10 19 23 37 41
30 : 6 11 17 21 24 40
31 : 6 12 15 27 33 38
32 : 6 16 18 26 34 39
33 : 7 9 17 18 31 41
34 : 7 10 13 24 32 42
35 : 7 11 20 27 28 39
36 : 7 12 16 22 23 40
37 : 7 14 21 25 29 38
38 : 8 16 20 24 31 37
39 : 9 15 21 23 32 35
40 : 10 14 18 27 30 36
41 : 11 13 22 26 29 33
42 : 12 17 19 25 28 34
Connected 6-regular simple graphs with girth at least g:
A184961 (triangle); chosen g:
A006822 (g=3),
A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184963 (g=3),
A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5), this sequence (k=6),
A184970 (k=7),
A184980 (k=8).
After approximately 390 processor days of computation with genreg, C(41,5)=0.
A184970
Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 5, 1547, 21609300, 1, 733351105933, 1
Offset: 4
1;
5;
1547;
21609300, 1;
733351105933, 1;
?, 8;
?, 741;
?, 2887493;
Connected 7-regular simple graphs with girth at least g:
A184971 (triangle); chosen g:
A014377 (g=3),
A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: this sequence (triangle); chosen g:
A184973 (g=3),
A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g:
A198303 (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6), this sequence (k=7),
A184980 (k=8).
Showing 1-8 of 8 results.
Comments