cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A014378 Number of connected regular graphs of degree 8 with n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 423187422492342, 281341168330848873, 214755319657939505395, 187549729101764460261498, 186685399408147545744203815, 210977245260028917322933154987
Offset: 0

Views

Author

Keywords

Comments

Since the nontrivial 8-regular graph with the least number of vertices is K_9, there are no disconnected 8-regular graphs with less than 18 vertices. Thus for n<18 this sequence is identical to A180260. - Jason Kimberley, Sep 25 2009 and Feb 10 2011

Examples

			a(0)=1 because the null graph (with no vertices) is vacuously 8-regular and connected.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.

Crossrefs

Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
8-regular simple graphs: this sequence (connected), A165878 (disconnected), A180260 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), this sequence (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: A184980 (triangle); chosen g: A184983 (g=3). (End)

Formula

a(n) = A184983(n) + A181154(n).
a(n) = A180260(n) + A165878(n).
This sequence is the inverse Euler transformation of A180260.

Extensions

Using the symmetry of A051031, a(15) and a(16) were appended by Jason Kimberley, Sep 25 2009
a(17)-a(22) from Andrew Howroyd, Mar 13 2020

A185131 Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 2, 1, 5, 2, 19, 6, 1, 85, 22, 2, 509, 110, 9, 1, 4060, 792, 49, 1, 41301, 7805, 455, 5, 510489, 97546, 5783, 32, 7319447, 1435720, 90938, 385, 117940535, 23780814, 1620479, 7574, 1, 2094480864, 432757568, 31478584, 181227, 3, 40497138011, 8542471494
Offset: 2

Views

Author

Jason Kimberley, Jan 09 2012

Keywords

Comments

The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A000066(g).

Examples

			                  1;
                  2,             1;
                  5,             2;
                 19,             6,            1;
                 85,            22,            2;
                509,           110,            9,          1;
               4060,           792,           49,          1;
              41301,          7805,          455,          5;
             510489,         97546,         5783,         32;
            7319447,       1435720,        90938,        385;
          117940535,      23780814,      1620479,       7574,         1;
         2094480864,     432757568,     31478584,     181227,         3;
        40497138011,    8542471494,    656783890,    4624501,        21;
       845480228069,  181492137812,  14621871204,  122090544,       546,    1;
     18941522184590, 4127077143862, 345975648562, 3328929954,     30368,    0;
    453090162062723,        ?,            ?,     93990692595,   1782840,    1;
  11523392072541432,        ?,            ?,   2754222605376,  95079083,    3;
 310467244165539782,        ?,            ?,          ?,     4686063120,   13;
8832736318937756165,        ?,            ?,          ?,   220323447962,  155;
          ?,                ?,            ?,          ?, 10090653722861, 4337;
		

Crossrefs

Connected 3-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A002851 (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: this sequence (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).

Extensions

Terms C(18,6), C(20,7) and C(21,7) from House of Graphs via Jason Kimberley, May 21 2017

A181154 Number of connected 8-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 13, 1
Offset: 0

Views

Author

Jason Kimberley, week to Jan 31 2011

Keywords

Comments

a(20) and a(21) were computed by the author, using GENREG, over 79 processor hours and 294 processor days, respectively, during Dec 2009.

Examples

			The a( 0)=1 null graph is vacuously 8-regular and connected; since it is acyclic then it has infinite girth.
The a(16)=1 graph is the complete bipartite graph K_{8,8}.
The a(21)=1 graph has girth 4, automorphism group of order 829440, and the following adjacency lists:
01 : 02 03 04 05 06 07 08 09
02 : 01 10 11 12 13 14 15 16
03 : 01 10 11 12 13 14 15 16
04 : 01 10 11 12 13 14 15 16
05 : 01 10 11 12 13 14 15 16
06 : 01 10 11 12 17 18 19 20
07 : 01 10 11 13 17 18 19 20
08 : 01 10 12 13 17 18 19 20
09 : 01 11 12 13 17 18 19 20
10 : 02 03 04 05 06 07 08 21
11 : 02 03 04 05 06 07 09 21
12 : 02 03 04 05 06 08 09 21
13 : 02 03 04 05 07 08 09 21
14 : 02 03 04 05 17 18 19 20
15 : 02 03 04 05 17 18 19 20
16 : 02 03 04 05 17 18 19 20
17 : 06 07 08 09 14 15 16 21
18 : 06 07 08 09 14 15 16 21
19 : 06 07 08 09 14 15 16 21
20 : 06 07 08 09 14 15 16 21
21 : 10 11 12 13 17 18 19 20
		

References

  • M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146.

Crossrefs

8-regular simple graphs with girth at least 4: this sequence (connected), A185284 (disconnected), A185384 (not necessarily connected).
Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), this sequence (k=8), A181170 (k=9).
Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), this sequence (g=4).
Connected 8-regular simple graphs with girth exactly g: A184980 (triangle); chosen g: A184983 (g=3).

A184980 Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth exactly g.

Original entry on oeis.org

1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105934, 1
Offset: 9

Views

Author

Jason Kimberley, Jan 19 2012

Keywords

Comments

The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A054760(8,g).

Examples

			1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105934, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
		

Crossrefs

Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), this sequence (k=8).

A184941 Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth at least g.

Original entry on oeis.org

1, 1, 2, 6, 1, 16, 0, 59, 2, 265, 2, 1544, 12, 10778, 31, 88168, 220, 805491, 1606, 8037418, 16828, 86221634, 193900, 985870522, 2452818, 11946487647, 32670330, 1, 152808063181, 456028474, 2, 2056692014474, 6636066099, 8, 28566273166527, 100135577747, 131
Offset: 5

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).

Examples

			1;
1;
2;
6, 1;
16, 0;
59, 2;
265, 2;
1544, 12;
10778, 31;
88168, 220;
805491, 1606;
8037418, 16828;
86221634, 193900;
985870522, 2452818;
11946487647, 32670330, 1;
152808063181, 456028474, 2;
2056692014474, 6636066099, 8;
28566273166527, 100135577747, 131;
		

Crossrefs

Connected 4-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: A184940 (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), this sequence (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).

A184951 Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 3, 60, 1, 7848, 1, 3459383, 7, 2585136675, 388, 2807105250897, 406824
Offset: 3

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4. The row length is incremented to g-2 when 2n reaches A054760(5,g).

Examples

			1;
3;
60, 1;
7848, 1;
3459383, 7;
2585136675, 388;
2807105250897, 406824;
		

Crossrefs

Connected 5-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006821 (g=3), A058275 (g=4), A205295 (g=5).
Connected 5-regular simple graphs with girth exactly g: A184950 (triangle); chosen g: A184953 (g=3), A184954 (g=4), A184955 (g=5).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), this sequence (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8).

Extensions

a(14) from Jason Kimberley, Dec 26 2012

A184961 Irregular triangle C(n,g) read by rows, counting the connected 6-regular simple graphs on n vertices with girth at least g.

Original entry on oeis.org

1, 1, 4, 21, 266, 7849, 1, 367860, 0, 21609300, 1, 1470293675, 1, 113314233808, 9, 9799685588936, 6
Offset: 7

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3. The row length is incremented to g-2 when n reaches A054760(6,g).

Examples

			Triangle begins:
1;
1;
4;
21;
266;
7849, 1;
367860, 0;
21609300, 1;
1470293675, 1;
113314233808, 9;
9799685588936, 6;
		

Crossrefs

Connected 6-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A006822 (g=3), A058276 (g=4).
Connected 6-regular simple graphs with girth exactly g: A184960 (triangle); chosen g: A184963 (g=3), A184964 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), this sequence (k=6), A184971 (k=7), A184981 (k=8).

A184971 Irregular triangle C(n,g) counting the connected 7-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 5, 1547, 21609301, 1, 733351105934, 1
Offset: 4

Views

Author

Jason Kimberley, Jan 10 2012

Keywords

Comments

The first column is for girth at least 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2. The row length is incremented to g-2 when 2n reaches A054760(7,g).

Examples

			1;
5;
1547;
21609301, 1;
733351105934, 1;
?, 8;
?, 741;
?, 2887493;
		

Crossrefs

Connected 7-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A014377 (g=3), A181153 (g=4).
Connected 7-regular simple graphs with girth exactly g: A184970 (triangle); chosen g: A184973 (g=3), A184974 (g=4).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), this sequence (k=7), A184981 (k=8).

A184991 Irregular triangle C(n,g) counting the connected 9-regular simple graphs on 2n vertices with girth at least g.

Original entry on oeis.org

1, 9, 88193, 113314233813
Offset: 5

Views

Author

Jason Kimberley, Feb 03 2012

Keywords

Comments

The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A054760(9,g).

Examples

			1;
 9;
 88193;
 113314233813;
 ?, 1;
 ?, 1;
 ?, 14;
		

Crossrefs

Connected 9-regular simple graphs with girth at least g: this sequence (triangle); chosen g: A014381 (g=3), A181170 (g=4).
Connected 9-regular simple graphs with girth exactly g: A184990 (triangle); chosen g: A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g: A185131 (k=3), A184941 (k=4), A184951 (k=5), A184961 (k=6), A184971 (k=7), A184981 (k=8), this sequence (k=9).
Showing 1-9 of 9 results.