A002851
Number of unlabeled trivalent (or cubic) connected simple graphs with 2n nodes.
Original entry on oeis.org
1, 0, 1, 2, 5, 19, 85, 509, 4060, 41301, 510489, 7319447, 117940535, 2094480864, 40497138011, 845480228069, 18941522184590, 453090162062723, 11523392072541432, 310467244165539782, 8832736318937756165
Offset: 0
G.f. = 1 + x^2 + 2*x^3 + 5*x^4 + 19*x^5 + 85*x^6 + 509*x^7 + 4060*x^8 + 41302*x^9 + 510489*x^10 + 7319447*x^11 + ...
a(0) = 1 because the null graph (with no vertices) is vacuously 3-regular.
a(1) = 0 because there are no simple connected cubic graphs with 2 nodes.
a(2) = 1 because the tetrahedron is the only cubic graph with 4 nodes.
a(3) = 2 because there are two simple cubic graphs with 6 nodes: the bipartite graph K_{3,3} and the triangular prism graph.
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
- F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 195.
- R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
- R. C. Read and G. F. Royle, Chromatic roots of families of graphs, pp. 1009-1029 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)
- Peter Adams, Ryan C. Bunge, Roger B. Eggleton, Saad I. El-Zanati, Uğur Odabaşi, and Wannasiri Wannasit, Decompositions of complete graphs and complete bipartite graphs into bipartite cubic graphs of order at most 12, Bull. Inst. Combinatorics and Applications (2021) Vol. 92, 50-61.
- G. Brinkmann, J. Goedgebeur and B. D. McKay, Generation of cubic graphs, Discr. Math. Theor. Comp. Sci. 13 (2) (2011) 69-80
- G. Brinkmann, J. Goedgebeur, and N. Van Cleemput, The history of the generation of cubic graphs, Int. J. Chem. Modeling 5 (2-3) (2013) 67-89
- F. C. Bussemaker, S. Cobeljic, L. M. Cvetkovic and J. J. Seidel, Computer investigations of cubic graphs, T.H.-Report 76-WSK-01, Technological University Eindhoven, Dept. Mathematics, 1976.
- F. C. Bussemaker, S. Cobeljic, D. M. Cvetkovic, and J. J. Seidel, Cubic graphs on <= 14 vertices J. Combinatorial Theory Ser. B 23(1977), no. 2-3, 234--235. MR0485524 (58 #5354).
- Timothy B. P. Clark and Adrian Del Maestro, Moments of the inverse participation ratio for the Laplacian on finite regular graphs, arXiv:1506.02048 [math-ph], 2015.
- Jan Goedgebeur and Patric R. J. Ostergard, Switching 3-Edge-Colorings of Cubic Graphs, arXiv:2105:01363 [math.CO], May 2021. See Table 1.
- H. Gropp, Enumeration of regular graphs 100 years ago, Discrete Math., 101 (1992), 73-85.
- House of Graphs, Cubic graphs
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Klin, M. Rücker, Ch. Rücker and G. Tinhofer, Algebraic Combinatorics [broken link]
- M. Klin, M. Rücker, Ch. Rücker, and G. Tinhofer, Algebraic Combinatorics (1997)
- Denis S. Krotov and Konstantin V. Vorob'ev, On unbalanced Boolean functions attaining the bound 2n/3-1 on the correlation immunity, arXiv:1812.02166 [math.CO], 2018.
- R. J. Mathar/Wikipedia, Table of simple cubic graphs [From _N. J. A. Sloane_, Feb 28 2012]
- M. Meringer, Tables of Regular Graphs
- R. W. Robinson and N. C. Wormald, Numbers of cubic graphs. J. Graph Theory 7 (1983), no. 4, 463-467.
- Sage, Common Graphs (Graph Generators)
- J. J. Seidel, R. R. Korfhage, & N. J. A. Sloane, Correspondence 1975
- H. M. Sultan, Separating pants decompositions in the pants complex.
- H. M. Sultan, Net of Pants Decompositions Containing a non-trivial Separating Curve in the Pants Complex, arXiv:1106.1472 [math.GT], 2011.
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Cubic Graph
Cf.
A004109 (labeled connected cubic),
A361407 (rooted connected cubic),
A321305 (signed connected cubic),
A000421 (connected cubic loopless multigraphs),
A005967 (connected cubic multigraphs),
A275744 (multisets).
3-regular simple graphs: this sequence (connected),
A165653 (disconnected),
A005638 (not necessarily connected),
A005964 (planar).
Connected regular graphs
A005177 (any degree),
A068934 (triangular array), specified degree k: this sequence (k=3),
A006820 (k=4),
A006821 (k=5),
A006822 (k=6),
A014377 (k=7),
A014378 (k=8),
A014381 (k=9),
A014382 (k=10),
A014384 (k=11).
More terms from Ronald C. Read
A014371
Number of trivalent connected simple graphs with 2*n nodes and girth at least 4.
Original entry on oeis.org
1, 0, 0, 1, 2, 6, 22, 110, 792, 7805, 97546, 1435720, 23780814, 432757568, 8542471494, 181492137812, 4127077143862
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
- G. Brinkmann, J. Goedgebeur and B. D. McKay, Generation of Cubic graphs, Discrete Mathematics and Theoretical Computer Science, 13 (2) (2011), 69-80. (hal-00990486)
- House of Graphs, Cubic graphs.
- Jason Kimberley, Connected regular graphs with girth at least 4
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs.
- M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146.
3-regular simple graphs with girth at least 4: this sequence (connected),
A185234 (disconnected),
A185334 (not necessarily connected).
-
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
A002851 = A@002851;
A006923 = A@006923;
a[n_] := A002851[[n + 1]] - A006923[[n + 1]];
a /@ Range[0, 16] (* Jean-François Alcover, Jan 27 2020 *)
Terms a(14) and a(15) appended, from running Meringer's GENREG for 4.2 and 93.2 processor days at U. Newcastle, by
Jason Kimberley on Jun 28 2010
A014372
Number of trivalent connected simple graphs with 2n nodes and girth at least 5.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 2, 9, 49, 455, 5783, 90938, 1620479, 31478584, 656783890, 14621871204, 345975648562
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
Contribution from Jason Kimberley, 2010, 2011, and 2012: (Start)
3-regular simple graphs with girth at least 5: this sequence (connected),
A185235 (disconnected),
A185335 (not necessarily connected).
Terms a(15) and a(16) appended, from running Meringer's GENREG for 28.7 and 715.2 processor days at U. Ncle., by
Jason Kimberley, Jun 28 2010.
A014374
Number of trivalent connected simple graphs with 2n nodes and girth at least 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7574, 181227, 4624501, 122090544, 3328929954, 93990692595, 2754222605376
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
- M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146. [Jason Kimberley, Jan 29 2011]
Connected k-regular simple graphs with girth at least 6:
A186726 (any k),
A186716 (triangle); specified degree k:
A185116 (k=2), this sequence (k=3),
A058348 (k=4).
Terms a(16) and a(17) appended, from running Meringer's GENREG for 18.6 and 530 processor days at U. Ncle., by
Jason Kimberley on May 18 2010
A014375
Number of trivalent connected simple graphs with 2n nodes and girth at least 7.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 21, 546, 30368, 1782840, 95079083, 4686063120, 220323447962, 10090653722861
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
Connected k-regular simple graphs with girth at least 7:
A186727 (any k),
A186717 (triangle); specific k:
A185117 (k=2), this sequence (k=3).
Terms a(17), a(18), and a(19) found by running Meringer's GENREG for 1.9 hours, 99.6 hours, and 207.8 processor days, at U. Ncle., by
Jason Kimberley, May 29 2010
Terms a(20) and a(21) from House of Graphs via
Jason Kimberley, May 21 2017
A014376
Number of trivalent connected simple graphs with 2n nodes and girth at least 8.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 13, 155, 4337, 266362, 20807688
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
Connected k-regular simple graphs with girth at least 8:
A186728 (any k),
A186718 (triangle); specific k:
A185118 (k=2), this sequence (k=3).
Terms a(21), a(22), and a(23) found by running Meringer's GENREG for 0.15, 5.0, and 176.2 processor days, respectively, at U. Ncle. by
Jason Kimberley, May 18 2010
A198303
Irregular triangle C(n,g) counting connected trivalent simple graphs on 2n vertices with girth exactly g.
Original entry on oeis.org
1, 1, 1, 3, 2, 13, 5, 1, 63, 20, 2, 399, 101, 8, 1, 3268, 743, 48, 1, 33496, 7350, 450, 5, 412943, 91763, 5751, 32, 5883727, 1344782, 90553, 385, 94159721, 22160335, 1612905, 7573, 1, 1661723296, 401278984, 31297357, 181224, 3, 31954666517
Offset: 2
1;
1, 1;
3, 2;
13, 5, 1;
63, 20, 2;
399, 101, 8, 1;
3268, 743, 48, 1;
33496, 7350, 450, 5;
412943, 91763, 5751, 32;
5883727, 1344782, 90553, 385;
94159721, 22160335, 1612905, 7573, 1;
1661723296, 401278984, 31297357, 181224, 3;
31954666517, 7885687604, 652159389, 4624480, 21;
663988090257, 166870266608, 14499780660, 122089998, 545;
14814445040728, 3781101495300, 342646718608, 3328899586, 30368;
The sum of the n-th row of this sequence is
A002851(n).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: this sequence (k=3),
A184940 (k=4),
A184950 (k=5),
A184960 (k=6),
A184970 (k=7),
A184980 (k=8).
A006926
Number of connected trivalent graphs with 2n nodes and girth exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 32, 385, 7573, 181224, 4624480, 122089998, 3328899586, 93988909755
Offset: 0
- CRC Handbook of Combinatorial Designs, 1996, p. 647.
- Gordon Royle, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Definition corrected to include "connected", and "girth at least 6" minus "girth at least 7" formula provided by
Jason Kimberley, Dec 12 2009
A184981
Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth at least g.
Original entry on oeis.org
1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 1
Offset: 9
1;
1;
6;
94;
10786;
3459386;
1470293676;
733351105935, 1;
?, 0;
?, 1;
?, 0;
?, 13;
?, 1;
Connected 8-regular simple graphs with girth at least g: this sequence (triangle); chosen g:
A014378 (g=3),
A181154 (g=4).
Connected 8-regular simple graphs with girth exactly g:
A184980 (triangle); chosen g:
A184983 (g=3).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g:
A185131 (k=3),
A184941 (k=4),
A184951 (k=5),
A184961 (k=6),
A184971 (k=7), this sequence (k=8),
A184991 (k=9).
A184941
Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth at least g.
Original entry on oeis.org
1, 1, 2, 6, 1, 16, 0, 59, 2, 265, 2, 1544, 12, 10778, 31, 88168, 220, 805491, 1606, 8037418, 16828, 86221634, 193900, 985870522, 2452818, 11946487647, 32670330, 1, 152808063181, 456028474, 2, 2056692014474, 6636066099, 8, 28566273166527, 100135577747, 131
Offset: 5
1;
1;
2;
6, 1;
16, 0;
59, 2;
265, 2;
1544, 12;
10778, 31;
88168, 220;
805491, 1606;
8037418, 16828;
86221634, 193900;
985870522, 2452818;
11946487647, 32670330, 1;
152808063181, 456028474, 2;
2056692014474, 6636066099, 8;
28566273166527, 100135577747, 131;
Connected 4-regular simple graphs with girth at least g: this sequence (triangle); chosen g:
A006820 (g=3),
A033886 (g=4),
A058343 (g=5),
A058348 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth at least g:
A185131 (k=3), this sequence (k=4),
A184951 (k=5),
A184961 (k=6),
A184971 (k=7),
A184981 (k=8).
Showing 1-10 of 17 results.
Comments